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Introduction

1.1 Introduction

Both ferromagnetic and paramagnetic dilute magnetic semiconductors (DMS)
are currently of interest in the context of spintronics and spin optoelectron-
ics. These technologies combine the merits of semiconductor-electronic and
magneto-electronic devices [1, 2].

Magnetoresistance measurements on DMS are well established techniques
to analyze the interplay of electronic and magnetic properties in dilute mag-
netic semiconductors. So far spin-dependent scattering was applied success-
fully for the interpretation of transport measurements in ferromagnetic metal-
lic GaMnAs random alloys, where the ferromagnetic coupling can be explained
by a Ruderman-Kittel-Kasuya-Yosida (RKKY) mechanism [3, 4, 5]. However,
these theories are no longer applicable for semiconducting samples in the para-
magnetic phase (e.g. obtained by annealing at elevated temperatures) or DMS
materials which even show segregation of clusters. The RKKY-based theories
are limited to metallic random GaMnAs alloys where disorder effects can be
neglected to a first approximation. Recently hybrid systems formed out of
ferromagnetic clusters embedded in a paramagnetic host matrix raised partic-
ular attention [6, 7, 8, 9]. They are considered as possible candidates for the
creation of spintronic devices working at room temperature. Along with this
interest, there is the need to find a proper theoretical model for the descrip-
tion of the material and transport properties of this highly complex material
class, e.g. beyond the the scope of (microscopic) RKKY theories. It is the aim
of this work to show that the transport properties of the matrix material and
of the hybrid structures can be described taking into account disorder aspects
as a major issue. The (macroscopic) description we use is rather empirical,
but it may serve as a first step towards a microscopic theory.
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We start by introducing a network model for the description of the magne-
totransport in p-type dilute magnetic semiconductors in the paramagnetic
phase. The model is based on a simplified description of the valence-band
structure and the acceptor state of the DMS. Band filling effects, magnetic-
field splitting of the band states due to the p-d exchange interaction as well
as effects of magnetic-field independent disorder are accounted for. We do
not include carrier-carrier interactions other than those responsible for the
local magnetism of the Mn ions. Despite the exclusion of many-body effects1

in the bands, positive as well as negative MR effects are predicted by the
model [10] which show a qualitative agreement with experiments on para-
magnetic p-type DMS [11, 12]. The model is adopted to the quantitative
description of Mn doped GaAs which serves as the archetypal dilute magnetic
semiconductor. As a physical by-catch on the way towards a fundamental de-
scription of this material (from the limit of a very dilute Mn incorporation
over annealed samples which show segregation trends to the other limit of
paramagnetic/ferromagnetic hybrid samples), an alternative explanation of a
non-Arrhenius temperature dependence of the resistivity is given. It is clearly
shown that in contrast to common oppinion a non-Arrhenius temperature
dependence is not inevitably indicative of hopping transport. This rather fun-
damental conclusion is not limited to the special choice of dilute magnetic
semiconductors.
In chapter 3 the model is extended to provide a quantitative description of a se-
ries of annealed Ga0.98Mn0.02As samples. It also serves for the first systematic
theoretical study of the magnetotransport properties of Ga1−xMnxAs/MnAs
hybrid structures in chapter 5. The first part of this work ends with a predic-
tion for the design of hybrid structures tailored to show strongly enhanced
magnetoresistance effects for possible future spintronic applications.

1.2 Dilute magnetic semiconductors − an overview

A dilute magnetic semiconductor is a semiconductor with a small (dilute)
fraction of magnetic ions incorporated on lattice sites. Due to the exchange
interaction between the localized spins of the magnetic ions and the spins
of the free carriers they exhibit unusual magnetic properties. Two major
classes of DMS are wide-gap (II,Mn)VI and (III,Mn)V alloys [13, 14, 15].
The magnetism of such DMS will strongly depend on the Mn content, the
electronic configuration of the Mn ion and on the degree of doping. While in

1 As a matter of fact, whenever in the following ’many-body effects’ are claimed
to be excluded, all many-body effects are neglected except the p-d exchange
interaction which is expressly included.
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(II,Mn)VI compounds the Mn is built in isoelectronically on group II cation
sites, in (III,Mn)V alloys the Mn ions are incorporated on cation sites acting
as acceptors. In particular the intrinsic correlation of transport and magnetic
properties in the III-Mn-V semiconductors aroused the interest of researchers
[16, 17, 18, 19]. The most prominent and best studied representative of the
(III,Mn)V alloys is Ga1−xMnxAs. In ideal Ga1−xMnxAs the Mn ions are spa-
tially randomly incorporated on Ga sites MnGa acting as acceptors [20], whilst
the half filled Mn 3d-shell provides S = 5

2 localized magnetic moments [21].
Since (II,Mn)VI compounds exhibit paramagnetic behavior up to very high
Mn contents, the combination of free holes and large localized magnetic mo-
ments yields ferromagnetism in Ga1−xMnxAs alloys. An Ruderman-Kittel-
Kasuya-Yosida (RKKY) mechanism is considered to be responsible for the
origin of ferromagnetism in this material. This is where the ferromagnetic
coupling between the localized Mn spins is mediated by the free holes in the
valence band [3, 22, 23, 24, 25]. Even though GaAs:Mn shows a paramagnetic
phase down to very low temperatures in the dilute regime, possible Curie
temperatures above room temperature are predicted theoretically for higher
Mn contents [26, 27]. However, the highest Curie temperature realized exper-
imentally so far in this alloy system is TC =173K [28].

For temperatures above TC the magnetization of dilute magnetic semicon-
ductor alloys is usually described by a modified Brillouin function accounting
for residual magnetic coupling between the magnetic ions. In paramagnetic
(II,Mn)VI alloys (where the magnetic properties are determined solely by su-
perexchange between Mn ions) the residual coupling is reflected by the tem-
perature dependence of the susceptibility, the inverse susceptibility follows a
linear Curie-Weiss temperature dependence at higher temperatures, but shows
a clear down bend when the temperature decreases [29, 30, 31, 32, 33]. This
behavior shows the temperature-induced change of the magnetic coupling.
The origin of this unusual behavior is the formation of antiferromagnetically
coupled nearest-neighbor Mn spins at low temperatures which break up with
increasing temperature [31]. It is worth noting that somewhat similar effects
may be anticipated for the magnetization of (III,Mn)V alloys above TC, lead-
ing to a Curie-Weiss parameter Θ which will depend on the sample properties
as well as on temperature. A detailed study of the influence of Θ on the mag-
netotransport properties of a Ga1−xMnxAs alloy and a first attempt to clarify
its dependence on the beforehand mentioned sample properties as well as on
temperature by comparison with experimental data is given in chapter 3.

Possible DMS-based designs consist either of ferromagnetic DMS [13],
paramagnetic DMS [34, 35, 36, 37] or paramagnetic-ferromagnetic hybrid
structures [38]. (Ga,Mn)As/MnAs is a typical example of such a hybrid struc-
ture. In this hybrid, ferromagnetic MnAs clusters are embedded in a paramag-
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netic Ga1−xMnxAs host matrix. Several current studies show that DMS-based
hybrid systems exhibit large positive and negative magneto-resistance (MR)
effects. Examples are the MR behavior of Ga1−xMnxAs/MnAs [39, 40, 41], of
GaAs/ErAs [42], of GaAs:Mn/MnSb [43, 44] and of Ge1−yMny:Mn11Ge8 [45].
However, so far the microscopic mechanisms are not at all understood be-
cause the galvano-magnetic properties of such granular ferromagnetic hybrid
systems depend strongly on the electronic transport properties of the para-
magnetic matrix material, the magnetic properties of the clusters and on the
interaction of the electronic states of the host matrix with the ferromagnetic
clusters. Of course, one essential prerequisite for understanding the galvano-
magnetic properties of the hybrids are detailed experimental and theoretical
studies of the transport in the paramagnetic DMS materials which act as host
matrix for the clusters.

Multiple magneto-transport experiments were reported on wide-gap
DMS alloys covering n-type Cd1−xMnxTe [46] and Cd1−xMnxSe [47] and
more recently p-type DMS such as Zn1−xMnxTe:N [11] and paramagnetic
Ga1−xMnxAs [12]. It is worth noting that already the paramagnetic DMS
alloy alone (i.e. without clusters) exhibits positive as well as negative MR
effects [11, 12, 46, 47, 48]. However, these are different from those in the cor-
responding hybrids [41]. The unusual MR effects of the paramagnetic DMS are
commonly explained by the interplay of band filling, magnetic-field induced
tuning of the band structure, carrier-carrier interactions and quantum correc-
tions [48, 49, 50, 51, 52, 53]. As an example, the influence of the magnetic-field
induced tuning of the alloy disorder on the galvano-magnetic properties of
DMS was included so far only in the magnetic polaron picture [54]. It arises
due to fluctuations in the Mn concentration which, in an applied magnetic
field, lead to local fluctuations of the Mn-induced band splitting. Magnetic-
field tuning of alloy disorder is a well known feature of DMS [55, 56, 57, 58].
On the other hand, it is well established that disorder in crystalline semicon-
ductor alloys and even more in amorphous semiconductors has a considerable
impact on the transport properties [59].

1.3 The transport model

According to the transport theory of Drude in a system which is considered
to be isotropic the resistivity ρ and the conductivity ν = 1

ρ can be represented
in terms of carrier density n and carrier mobility µ as

ρ =
1

n · q · µ (1.1)
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Fig. 1.1. For a doped semiconductor with a spatially disordered valence-band edge
it holds ∆ < (EA−EV (r)) (a) shows the energy spacing ∆E(r) between the average
valence-band edge EV (r) (dashed grey line) and the acceptor level EA. (b) illustrates
the activation energy ∆ = (EA − Em) given by the energy spacing between the
acceptor energy EA and the mobility edge Em (dashed grey line).

where q denotes the carrier’s charge. In the framework of a semiclassical trans-
port description the mobility µ can be decomposed as µ = q·τ

m� where τ repre-
sents the average time between two scattering events and m� is the effective
mass. The density of carriers in a semiconductor2 is given by

n =

∫ EV

−∞
N(E)Fh(E)dE (1.2)

where EV is the band-edge energy-level of the unperturbed valence band,
N(E) is the density of states in the valence band and F h(E) is the Fermi
distribution of holes. Usually this direct current resistivity ρ in doped semi-
conductors can be simplified and represented by an Arrhenius temperature
dependence

ρ = ρ̃ · exp(∆/kBT ) (1.3)

where ρ̃ is a pre-exponential factor, ∆ is the activation energy and kB is the
Boltzmann constant. A detailed analysis of the validity of such a simplification
depending on specific material parameters is given in chapter 2.

Disorder in the transport dominating band of a semiconductor can be
taken into account e.g. by a modification (a disorder-dependent reduction) of
the mobility. It is obvious that the mean free path (herewith τ) gets reduced
with increasing spatial fluctuations of the potential. Also the carrier density
gets affected by disorder. Besides a change of the position of the Fermi level,

2 Since Ga1−xMnxAs that is in the focus of this work is a p-type semiconductor,
we leave here the general description and concentrate on a semiconductor with
hole transport in the valence band.
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due to the fluctuations of the local valence-band edge EV (r), holes on accep-
tor states do not have to be activated to the spatial average of the valence-
band edge EV (r) but merely to an energy level Em, the so-called mobility
edge. As illustrated in Fig. 1.1 the required activation energy ∆ is given by
∆ = (EA − Em). It holds ∆ < (EA − EV (r)). Descriptions of the transport
properties in (doped) disordered semiconductors following this approach can
be found e.g. in [59, 60, 61] as well as in [10] where a comparison with the
alternative description given in the following is presented. Another attempt
to handle a transport description in the presence of disorder is to separate a
given disordered system into a number of subsystems which are so small, that
inside each single subsystem the influence of disorder can be neglected. The
transport properties of each of these ordered subsystems can be calculated
according to Eqn. 1.1 and 1.2. The members of this ensemble of subsystems
have to be connected somehow to represent the physical realities and the
macroscopic transport variables of the global system have to be derived.

1.3.1 General limitation of the approach

There is, however, one problem with the used description which should not be
concealed: Apart from the issue of finding the correct subsystem size which
represents the disorder in the system (discussed in detail in section 1.4.1), one
should keep in mind, that there exists a lower boundary of this subsystem
size. For subsystem sizes below this boundary the transport properties have
to be described quantum mechanically [62, 63]. Finding the exact value of
this lower boundary and its connection to parameters of the system is a
field of current research [64]. Therefore we follow a very pragmatic route and
hope that all subsystem sizes of use are large enough - an assumption that
indeed does not make the treatment of the given problem simple but at least
drastically simplifies it compared to the universal approach3.

1.3.2 The magnetoresistance

The material system we analyze is the magnetic semiconductor Ga1−xMnxAs
which in this work is in the main described in its paramagnetic phase.
The obtained results form a basis of the study of so-called paramagnetic-
ferromagnetic hybrid structures built out of a Ga1−xMnxAs host matrix with
embedded ferromagnetic MnAs clusters as shown in chapter 5. Discussed in

3 ”It would mean that the only possibility that remains is to describe the whole
universe at once by using one huge Hilbert space. It goes without saying that
such an approach will lead to many other problems” [63].
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more detail in section 1.3.3 the interaction of the localized magnetic moments
of the Mn-ions with an external magnetic field and their exchange interaction
with the valence-band states lead to a strong spin-selective splitting of the
valence band. According to this local variations of the carrier densities n as
well as a modified mobility µ arise due to the magnetic field induced disorder
effects. These modifications of quantities appearing in Eqn. 1.1 cause a notice-
able change of the resistivity. To access the magnetic fields influence on the
resistivity the macroscopic observable magnetoresistance (MR) is introduced

MR =
ρm − ρ0

ρ0
, (1.4)

ρm is the resistivity in the presence of an external magnetic field while ρ0

is the resistivity at zero field. Negative values of MR represent a resistivity
that decreases in the presence of an external magnetic field (in other words
the conductivity increases). The lower boundary of the magnetoresistance for
ρm ≤ ρ0 is given by MR= −1. For positive values of the MR the opposite
situation holds with ρm < ρ0 and no general upper boundary exists.

1.3.3 Interaction with an external magnetic field

In this section the interaction of a DMS with an external magnetic field H
is described briefly. For all further considerations the magnetic field is taken
as a weak perturbation and eigenvalues of the system Hamilton operator for
H = 0 are assumed to be known i.e. the band structure in the absence of
an external magnetic field is given. For simplicity the energy gets normalized
by the value of the unperturbed valence-band edge using EV = 0 at H = 0.
Starting point is the magnetic part Hm of the single-particle system Hamilton
operator H describing the interaction between a free carrier with spinoperator
s, an external magnetic field H = (0, 0, H) oriented in z-direction and the
system of magnetic ions with spinoperators Si

Hm(s,Si) =

HL + gµBµ0s · H︸ ︷︷ ︸
I

− 2
∑

i

JiSi · s︸ ︷︷ ︸
II

+ g′µBµ0H
∑

i

Si −
∑
i�=j

J ′
i,jSi · Sj

︸ ︷︷ ︸
III

. (1.5)

Part I describes the diamagnetic Landau quantization by HL and the contribu-
tion of the paramagnetic Zeeman splitting as for a pure diamagnetic material.
In part II the exchange interaction between the carrier and the localized mag-
netic ions is taken into account while part III covers the interaction between
the magnetic ions and the external field as well as the interaction among the


