
Chapter 1

Planning in Public Transit

In this chapter we give an overview of the planning process in public transit.
We will describe the planning problems associated with the operation of a
network of bus lines and present state of the art mathematical models and
algorithms to solve them. We will show the general trend that the used
planning scenarios become larger either by looking at larger planning units or
by looking at more planning steps at once. Both approaches lead to potential
better solutions by more degrees of freedom in the planning problems.

Some of the problems occurring in the planning process of bus traffic are
similar to planning problems in other modes of public transportation, such as
subways, trams, trains, or even airlines. We will comment on the details of the
similarities and differences in the respective sections. Bussieck et al. [1997]
describe the use of discrete optimization in the planning process of public
rail transports. We concentrate here on recent models and algorithms. An
overview about planning in public transport until 1994 can be found in the
article of Odoni et al. [1994]. Borndörfer et al. [2006] highlight the increasing
use of OR methods for planning problems in public transport and describe
exemplarily some applications.

We use in this thesis the definitions and notations of Schrijver [2003] for
graphs, linear programs (LPs), and mixed integer programs (MIPs). A short
overview of the used symbols can also be found in the annex.

1.1 Introduction

In the last years, the budgets of the federal government, the states, and the
municipalities in Germany were very tight. Therefore the federal government
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has cut the so called “Regionalisierungsmittel”, that is, subsidies for regional
public transport in Germany, from €7.1 billion to €6.6 per year1. Also other
subsidies were or will be reduced: Berlin has cut its subsidies to its public
transport company BVG, by €100 millions from 2005 to 20062 and further
reductions will likely follow. A study of Resch et al. [2006] reports reductions
of subsidies of 32–44% of three German public transit companies3. Also more
and more tenderings for the subsidies for public transit are put out instead
of giving them directly to the local companies. Thus, public mass transit
companies in Germany are under the pressure to reduce their costs. This
can be accomplished by either discontinuing unprofitable lines, by lowering
the wages of the personnel, or by increasing the efficiency of the schedules.
All of these measures have been taken in the past. In the following we
will examine where new mathematical methods may help to further improve
the efficiency without disadvantages for the drivers or the passengers. We
assume that even if computer based planning systems are already in use, new
mathematical approaches are able to solve larger planning problems at once
and help to integrate subsequent planning steps.

Besides the financial goals of the planning process also the general ben-
efit of public transport, summarized as public welfare, is of concern. The
following often opposing objectives are common for strategic and operational
planning in public transport:

• increasing the attractiveness of public transport,

• reducing operation cost for a given service level,

• increasing the transport capacity for a given budget,

• reducing medium term capital investment (e.g., by reducing the number
of buses, number of stops, or number of depots).

The improvement of the results of the planning process with respect to these
objectives is not the only advantage of using optimization methods. The
possibility of calculating alternative scenarios in short time is also of great
interest for public transport companies because it backs up the decision pro-
cess with reliable information.

1Haushaltsbegleitgesetz of Berlin, 2006
2business report BVG 2005
3The remaining subsidies are still about 9–21% of the total costs of the companies.
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1.2 Classification of Planning Steps

Usually the planning process in public transport is divided into strategic
and operational planning. Sometimes also tactical planning is mentioned as
an intermediate step. Strategic planning consists of problems dealing with
long term decisions about the infrastructure and the level of service, whereas
operational planning handles the problems which occur in the operation of a
given service.

We will concentrate in the sections below on the following planning steps:

1. Strategic planning:

• network design,

• line network planning,

• time table planning.

2. Operational planning:

• vehicle scheduling,

• duty scheduling,

• crew rostering.

We remark that the collection of passenger data as an input to strategic
planning problems is a different problem on its own, which we do not dis-
cuss here. Often mentioned in this context are operational problems, such
as the dispatching of vehicles or the recovery of planned schedules after de-
lays or breakdowns. These problems need specialized algorithms due to their
real time requirements, which are beyond the scope of this work. A re-
cent overview of literature about the treatment of delays in vehicle and duty
scheduling and an algorithm to deal with it can be found in Huisman [2004].

Another important planning step, which is in general not conducted by
the public transit companies but by local authorities, is the planning of public
tenderings of public transit for certain lines or regions. We cover this topic
because it can use methods of the other planning steps.

1.3 Basic Models

We introduce two basic mathematical planning models whose variants are of-
ten used in public transport planning problems or other scheduling problems.
We show the connections between those variants.
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a ≤ y(δin(v)) ≤ kmax

a

Figure 1.1: Modeling capacities on nodes

1.3.1 Flow Based Models

Many problems related to scheduling or transportation problems can be mod-
eled as flow problems in the following general sense: Given is a directed net-
work with a set of nodes V and a set of arcs A connecting the nodes, a source
s ∈ V , and a sink t ∈ V . Additionally, we have a minimum capacity kmin

a ≥ 0
and a maximum capacity kmax

a ≥ kmin
a as well as a cost ca per unit of flow

over each arc a ∈ A. The goal is to find a minimum cost flow from s to t
subject to the capacity constraints and eventually certain other constraints.
This task can be formulated as the following generalized minimum cost flow
problem (GMCF):

(GMCF) min cTy,

s. t.

(i) y(δin(v)) − y(δout(v)) = 0, ∀v ∈ V \ {s, t},
(ii) kmin

a ≤ ya ≤ kmax
a , ∀a ∈ A,

(iii) By = b or By ≤ b,

(iv) ya ≥ 0, ∀a ∈ A,

(v) y ∈ A.

Here, ya is the flow variable of arc a giving the number of units of the
flow over arc a. Because the decision variables are associated to arcs, we say
(GMCF) is an arc-based model.

The flow conservation constraints (i) ensure that at every node the in-
flow is equal to the out-flow. The capacity constraints (ii) guarantee that
the arc capacities are satisfied. These constraints can also be used to en-
force minimum or maximum flows over a node as follows: Replace a node by
two new adjacent nodes and a new arc connecting these nodes. The lower
capacity on the new arc is the desired minimum flow (see Figure 1.1). Addi-
tional properties of the flow can be modeled by constraints (iii). Here either
equalities or inequalities or a mixture is possible, B ∈ R×A and b ∈ R
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are an appropriate matrix and vector, and R is an index set. Inequalities
(iv) ensure the non-negativity of the flow. Constraints (v) model integrality.
This is required, e.g., to solve the problem of assigning integral resources like
vehicles or drivers to certain activities.

The minimum cost flow problem (MCF) without constraints (iii) is solv-
able in polynomial time by special network algorithms (see Ahuja et al.
[1993]) or by a specialized version of the simplex algorithm (see, e.g., Löbel
[1996]).

The multi-commodity flow problem is a specialization of (GMCF), for
which constraints (iii) of (GMCF) take the shape

(iiia) y(δin
g (v)) − y(δout

g (v)) = 0 ∀(v, g) ∈ V \ {s, t} × G.

Here G is the set of commodities, δin
g (v) := δin(v) ∩ Ag, and δout

g (v) :=
δout(v) ∩ Ag, whilst Ag, g ∈ G are disjoint subsets of A, and

⋃
g∈G Ag = A.

The equations (iiia) partition the network into |G| subnetworks which each
give rise to independent flow conservation constraints. Thus, equations (iiia)
render equations (i) redundant. However, equations (i) are still useful when
relaxing equations (iiia).

Multi-commodity flow problems occur in the planning of telecommuni-
cation networks, where each traffic gives rise to a single commodity, or as
a subproblem of the network design problem (see next section). Also the
multi-depot vehicle scheduling problem (see section 1.9) can be modeled as
a multi-commodity flow problem.

Another specialization of (GMCF) is the minimum cost flow problem with
resource constraints. For this problem we replace constraints (iii) by

(iiib) Ry ≤ �r ∀r ∈ R.

Here R ∈ R×A is a matrix whose entry in the r-th row and a-th column
gives the resource consumption of a resource r ∈ R by arc a. The vector
� ∈ R gives the maximal allowed consumption of the resources. A special
case of (GMCF) with constraints (iiib) is the resource constraint shortest
path problem. It occurs, e.g., in the duty generation subalgorithm of our
duty scheduling algorithm (see Section 5.5.1).

Another practically relevant special case of (iiib) are the following “in-
feasible path constraints” (iiic), which are used to remove a set of forbidden
paths P in feasible flows:

(iiic)
∑
a∈P

ya ≤ |P | − 1, ∀P ∈ P .
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This type of constraints can be used to model complicated constraints on
subflows, as they occur for example in duty scheduling problems or in vehicle
scheduling problems with maintenance requirements, which are described
below.

The model (GMCF) with constraints (iiic) is difficult to solve in practice,
if the set P of infeasible paths is large in comparison to the set of all possible
paths. This occurs, for example, in the duty scheduling problem since here
most paths in the graph are not representing a valid duty (see Schlechte
[2003]).

1.3.2 Path Based Models

To overcome the difficulties to solve (GMCF) with many constraints of type
(iiic) the flow model can be transformed by Dantzig-Wolfe decomposition
(Dantzig & Wolfe [1960]) into a path based model. The idea of this trans-
formation is that each st-flow can be decomposed into a sum of st-paths
and cycles. Thus, the problem (GMCF) can be reformulated as a problem
of finding a (cost minimal) set of paths and cycles such that the resulting
flow fulfills all capacity constraints. We call the result of this transformation
generalized path covering problem (GPCP).

(GPCP) min dTx,

s. t.

(i) kmin
a ≤ ∑

P�a

xP ≤ kmax
a , ∀a ∈ A,

(ii) xP ≥ 0, ∀P ∈ S,

(iii) x ∈ S .

Here S ⊂ P(A) is the set of feasible arc sets. In our applications of this
model these sets form st-paths. The variables xP , P ∈ S indicate how much
flow is routed over path P . Inequalities (i) guarantee, like the constraints
(GMCF)(ii), the compliance with the minimum and maximum capacities
kmin

a and kmax
a on every arc a ∈ A. The notation P � a denotes all arc sets

P ∈ S that include arc a. Constraints (ii) and (iii) ensure non-negativity
and integrality of the variable xP , P ∈ S. The cost dP , P ∈ S , denotes the
cost of a certain arc set P . Often dP =

∑
a∈P ca, that is, the cost of an arc

set P is the sum of the cost of its arcs, or dP = 1 for all P ∈ S if only the
number of arc sets should be minimized.
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In general, the set S of feasible arc sets is very large. Nevertheless
models of this kind can be solved by column generation approaches (see
Barnhart et al. [1998] or Section 3.1). Specializations of this problem are
the path packing, path partitioning, as well as the path covering problem.
In these problems the arc sets form st-paths. In the path covering problem
all minimum capacities are one and the maximum capacities are infinite, i.e.
kmin

a = 1 and kmax
a = ∞ for all a ∈ A, and in the path packing problem

the maximum capacities are one (kmax
a = 1) and the minimum capacities are

zero (kmin
a = 0) for each a ∈ A. The path partitioning problem finally has

kmin = = kmax.

A slightly more generalized form of these problems are the well known
set covering (SCP), set packing (SSP), and set partitioning (SPP) problems.
In these problems the paths in a graph are replaced by subsets P of a basic
set A. These problems can be formulated as follows:

(SCP) min dTx,

s. t.

(i)
∑
P�a

xP ≥ 1 ∀a ∈ A,

(iii) x ∈ {0, 1}S ,

(SSP) min dTx,

s. t.

(i)
∑
P�a

xP ≤ 1 ∀a ∈ A,

(iii) x ∈ {0, 1}S ,

and
(SPP) min dTx,

s. t.

(i)
∑
P�a

xP = 1, ∀a ∈ A,

(iii) x ∈ {0, 1}S .

A survey about those problems can be found in Borndörfer [1998].

It is problem specific whether the formulation as a GMCF or a path ori-
ented problem such as SSP, SCP, or SPP is appropriate. In our experience
the path formulations are easier to solve if the network contains many in-
feasible paths. It may also be necessary to formulate a problem path based
if the network is very large. This occurs regularly in multi-commodity flow
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problems with many commodities. If there are only a few additional con-
straints of type (iii) in (GMCF) the arc based formulation seems in general
to give better results. A reason for this may be that for problems arising in
applications the LP-relaxation is often already nearly integral.

1.4 Network Design

1.4.1 Description

The network design problem (NDP) consists of selecting routes that can be
used by bus lines. The routes are meeting at the transfer points. At these
points buses can change their route. The routes have to be selected in such
a way that a given demand of traffic can be handled and that the cost for
setting up the routes and the cost for using them are minimized.

Typically only the extension or modification of an existing network is
considered since in most cases historically grown transportation networks
exist that can not be modified easily, and because any alteration of lines
involves expenses for removal or addition of bus stops, printouts of timetables,
building new parking facilities, and marketing to inform the passengers about
the changes.

1.4.2 Models

A framework for a slightly more general class of network design problems is
presented in Kim & Barnhart [1997]. The model is based on a very similar
model in Magnanti & Wong [1984]. We want to sketch here the mixed integer
programming model of Kim & Barnhart [1997] and discuss its properties.
Given is a network N = (V, A). The nodes V represent potential end points
and transfer points of bus lines which include also the origins and destinations
of traffic. The set of arcs A models the physical links between these points
called routes. The set of origin/destination pairs (OD-pairs) is denoted by
P , while O(p) and D(p) for p ∈ P are the origin or destination of p. Let
bp denote the demand of traffic from O(p) to D(p) (measured in number of
passengers). The set of potential traffic modes is denoted by F . Typical
traffic modes are different types of buses, such as articulated buses or double
deckers, trams, or different types of trains. Let uf

a denote the passenger
capacity of one unit of traffic mode f ∈ F on arc a. The cost cp

a, p ∈ P, a ∈ A


