
1 Introduction

Computer science as a whole contains many fields. They can be very broadly divided into

practical and theoretical areas. A member of the former area, for example, is the field of

software engineering, of designing and implementing specific software and tools that are

of direct use for people or companies. Another example of practical computer science is

the field of computer graphics and multimedia, where one goal might be the modeling of

three dimensional objects in computers or the automatic recognition of people’s faces

by computer programs. In the area of theoretical computer science most research is

not directly useful for everyday life; however, it forms a basis for most other fields of

computer science. Developing computer software would be less advanced if it were not

for the research in the theory of programming languages. Similarly the complexity theory

is a broad field, that allows people to know in advance, for example, whether it makes

sense to tackle a certain problem or whether the problem simply cannot ever be solved

by any computers, no matter how advanced they may become. That is the field, where

this thesis is located.

The general idea behind complexity theory is to analyze different problems or tasks a

computer might encounter, and compare them to one another. For this, many so called

complexity classes have been introduced, which incorporate problems that are similar to

each other in the way computers deal with them; that is, they have a resembling running

time or they utilize similar amounts of memory space. Two very famous complexity

classes are P and NP. The former contains, colloquially spoken, all problems that are

easy to solve, whereas the latter contains all problems where it is easy to verify, whether

a given solution is correct. A formal definition of these and other complexity classes will

be given later in this thesis. Trivially, all problems in P are also in NP. The question,

whether also all problems in NP are in P (thus making the two classes equal), is probably

the best examined yet still unsolved problem in computer science. Though most people

believe the two classes to be different, nobody has yet been able to prove or disprove

their equality.

Of course, complexity theory is a very broad area in itself, since there is a vast

number of different problems to consider. To name only a few, there are, for example,

cryptographic problems and their protocols, optimization problems, interactive proof

systems, probabilistic algorithms, and so forth. It is way beyond the scope of this thesis

to discuss all of them. Though, another major issue in complexity theory, which we will

take a closer look at, are Boolean formulae. A Boolean formula is a mapping from a

list of input variables to one output variable, with the restriction that only values from

{0, 1} are allowed. Instead of 0 one often uses false and 1 is often identified with true.

So, a very obvious question is to decide, given a certain input to the variables, whether a

1

1 Introduction

Boolean formula evaluates to true or false. Another, related question is, whether there

exists any input to the variables such that a given formula evaluates to true. The latter

one is well-known under the name satisfiability problem for Boolean formulae. These

formulae are the most natural kind of problems in complexity theory when dealing with

the polynomial hierarchy, which is a hierarchy of complexity classes based upon the

classes NP and P, because they provide – in different variations – complete problems

for most classes of the polynomial hierarchy. For instance, Stephan A. Cook showed

already in 1971, that the above mentioned satisfiability problem (known as SAT) is, in its

general version, one of the most difficult problems in the class NP [Coo71]. Those most

difficult problems will be called NP-complete. Naturally, the complexity of such problems

depends to a large extend on the type of Boolean formula that is used. Even though

SAT without any restrictions is NP-complete, the problem becomes trivial, when we

only allow the formulae to be a conjunction of positive literals. Then, any such formula is

always satisfiable. The questions that arise are: For what type of formulae is the problem

still difficult? What changes it to become easy? And where exactly is that borderline?

Another interesting question that comes to mind is, whether this borderline is sharp, or

what kind of complexity classes between the “difficult” (NP-complete) and “easy” (in P)

ones can be assumed by Boolean formulae. This question is especially reasonable, because

Richard E. Ladner proved that unless P = NP, there are infinitely many complexity

classes between P and NP [Lad75]. However, an intricacy is, that there are, of course,

infinitely many different kinds of Boolean formulae; and it is not clear, how to look at all

of these at the same time.

A good way to get to work with this infinite number of Boolean formulae is with the

help of constraints . Basically, a constraint is simply a relation; and a constraint formula is

the conjunction of such constraints. A set of constraints will be called constraint language.

The disadvantage of using constraints is, that it is not possible to express every Boolean

formula with the help of constraints. However, this drawback is compensated on the

one hand by the fact that constraints still cover an infinite number of Boolean formulae,

and most of the “important” problems, that have already been analyzed through other

means, can be modeled by a constraint formula (e. g., 3-SAT, 2-SAT, Horn-formulae, etc.).

On the other hand a great advantage of constraint formulae in comparison to “usual”

Boolean formulae (of course, every constraint formula is also a Boolean formula, just a

restricted version) is, that it is possible to analyze the complexity of constraint formulae

in a very succinct way. As we will see, there are several properties of constraints (or

constraint languages) and the complexity of all problems, that we will examine, depends

solely on these properties. This allows us to state complexity results for an infinite

number of Boolean formulae. This method has first been used by Thomas Schaefer in

1978. He classified the constraint satisfaction problem (CSP), which is the constraint

version of SAT. Surprisingly, he found out, that the problem is in P, if the constraint

language has some certain well-defined properties, and in all other cases, the CSP is

already NP-complete [Sch78]. This theorem of his will be used as a starting point for

this thesis, which is organized as follows:

After we have introduced all necessary notations and definitions in Chapter 2, we will

2

refine Schaefer’s Theorem in Chapter 3 in such a way that we will take a closer look at

the Boolean constraint satisfaction problem. Schaefer obtained a dichotomatic complexity

result by separating the problem into P and NP-complete cases. We will examine the

tractable cases in more detail and show that these can be divided further into four cases

(or five, if we count the trivial ones as a case of their own).

In Chapter 4 we generalize the constraint satisfaction problem by introducing quantifiers

for the variables. Then the question is not anymore, whether there is a satisfying

assignment for a given formula, but whether the variables are quantified in such a way,

that the formula is true. In addition to the decision problem, we also consider its

corresponding counting version: There not all variables need to be quantified and we are

interested in the number of solutions for the not quantified variables.

Finally, we consider graph related problems in Chapter 5. We start with the constraint

analogon to graph isomorphism – the equivalence problem – and its one-sided version

– implication. Then, we move on to the isomorphic implication problem, which is the

constraint counterpart to subgraph isomorphism. Incidentally, the isomorphic implication

problem discloses an interesting and new approach, which could lead to a proof that

graph isomorphism is in P, which it is not known to be.

The results of Chapter 3 are based on a joint work with Eric Allender, Neil Immerman,

Henning Schnoor, and Heribert Vollmer [ABI+05]. Chapter 4 relies on the previous

publications [BCC+04] and [BBC+05], which are joint works with Elmar Böhler, Philippe

Chapdelaine, Nadia Creignou, Steffen Reith, Henning Schnoor, and Heribert Vollmer.

Parts of Chapter 5 have been obtained together with Edith Hemaspaandra and have

been published in [BH05].

3

1 Introduction

4

2 Preliminaries

This chapter contains definitions and theorems, which will be used extensively throughout

the paper. We will start with some basic mathematical definitions including Boolean

formulae. Then follows an introduction to complexity classes and reductions. Thereafter

we will define constraints and finally we will introduce some closure properties, which

will enable us to give short and elegant proofs as we will see in Chapters 3 and 4.

2.1 Basics

A basic mathematical object is the set , which is a collection of elements. Each such element

in a set is called a member of that particular set. There are two different ways to describe a

set. One is to list all of its elements (e. g., A = {a1, a2, a3, a4}) and the other is to describe,

what properties all elements in the set possess (e. g., A = {a | a has property E}). Instead

of listing each and every element, which is not possible for infinite sets and infeasible

for very large sets, one can also use ellipses (. . .). If an element a is a member of a set

A, we also write a ∈ A, and accordingly a �∈ A, if a is not a member of A. Further, we

will write A ⊆ B if every member of A is also a member of B, and say A is a subset of

B; we write A ⊂ B if A ⊆ B, but not B ⊆ A, and say A is a proper subset of B. If on

the other hand A ⊆ B and B ⊆ A, we say that A equals B, denoted by A = B. The set

with no elements is called the empty set and will be denoted by ∅. The number of the

elements in a set is called its cardinality and is denoted by |A| for a set A.

Example 2.1.1 The sets A, B, and C will be defined by listing all elements, whereas D
and E use the description technique: A = {2, 3, 5}, B = {1, 2, . . . }, C = {1, . . . , 131072},

D = {a | a is a natural number}, E = {a | a is prime}. Obviously, the following holds:

1 �∈ A, 2 ∈ A, A ⊂ E ⊆ B = D, |A| = 3, and |∅| = 0. The set D of natural numbers will

be used quite often and is usually denoted by N.

There are three basic operations on sets: the union (∪), intersection (∩), and the

difference (\). The union of A and B is defined to be the set of elements, which are in A
or in B or in both. An element is in the intersection of A and B, if and only if it is an

element of A and an element of B. And finally, a ∈ A \B if and only if a ∈ A and a �∈ B.

An object similar to the set is the tuple. It is also a collection of elements; however,

contrary to a set, a tuple has to be finite and all elements are ordered. Tuples are written

in parentheses (e. g., (1, 3, 1)). If n is the number of elements in a tuple u, we also call

it an n-tuple or an n-ary tuple. For n = 2 and n = 3 we use the short forms of pair

and triple. Similarly to sets, the number of elements in a tuple u is also denoted by |u|.

5

2 Preliminaries

Instead of tuple, we sometimes also use the more general expression vector, which, for

the scope of this thesis, should always denote a tuple.

There exists a direct connection between sets and tuples, namely the cross product

(also called Cartesian product) of sets, which yields a set of tuples. For A1, . . . , An sets,

define A1 × · · · ×An = {(a1, . . . , an) | a1 ∈ A1, . . . , an ∈ An}. As a special case, An for A
a set and n ∈ N is, analogously to the power of numbers, defined as A × · · · × A. Hereby

A0 = {()} and A1 formally is {(a) | a ∈ A}; however, to simplify matters we will define

A1 = A.

An n-ary Boolean relation R is a subset of {0, 1}n. An n-ary Boolean function

(sometimes also called mapping) f is a subset of {0, 1}n+1 with the additional property that

if (a1, . . . , an, b) ∈ f and (a1, . . . , an, b′) ∈ f , then b = b′, where a1, . . . , an, b, b′ ∈ {0, 1}.

Instead of (a1, . . . , an, b) ∈ f we also write f(a1, . . . , an) = b and say that f maps

(a1, . . . , an) to b. Accordingly, instead of f ⊆ {0, 1}n+1 we mainly write f : {0, 1}n →
{0, 1}, where {0, 1}n is the input and {0, 1} is the output . As a generalization of the

Boolean function we allow the input and output to be arbitrary sets A and B instead

of {0, 1}n; thus, yielding a function f : A → B. A function f is called injective, if it

has the property that f(a) = f(b) implies a = b for any a, b ∈ A. An injective function

f : A → B is called bĳective, if for all b ∈ B there is an a ∈ A such that f(a) = b, that is,

every element from B is mapped to. A permutation π is a special kind of function, that

maps from one set A to itself, such that A = {π(a) | a ∈ A}.

In the following we will use the standard correspondence between Boolean relations

and Boolean formulae; that is, an n-ary Boolean relation R corresponds to an n-ary

Boolean formula f in such a way, that a vector v is in R if and only if f(v) = 1.

A finite non-empty set Σ is called alphabet . A sequence w = a1 . . . an of n elements of

Σ for n ≥ 0 is called a word (or sometimes also string) over the alphabet Σ and |w| = n
is called its length. In the special case of n = 0 we write w = ε and call ε the empty

word . The set of all words over Σ is denoted by Σ∗. Let A ⊆ Σ∗; then, A is called a

language over Σ. If A ⊆ Σ∗ is a language, we define the complement of A as A = Σ∗ \ A.

Example 2.1.2 Let Σ = {0, 1} be an alphabet. Then the set of all words over Σ is

the set Σ∗ = {ε, 0, 1, 00, 01, 10, 11, 000, . . . }. Possible languages over Σ would be A = ∅,

B = Σ∗, C = {1, 10}, and D = {ε, 0, 00, 000, . . . }. Obviously A = B and B = A.

Finally, we will define some notions of the propositional logic, in particular formulae

and their assignments. Let X = {x1, . . . , xn} be a set of variables. Then any variable

xi ∈ X is a propositional formula. If ϕ and ψ are propositional formulae, then also ¬ϕ,

ϕ ∧ ψ, and ϕ ∨ ψ are propositional formulae. Instead of ¬ϕ we sometimes also write

ϕ. If ϕ is a propositional formula and x1, . . . , xn are all variables occurring in ϕ, we say

that ϕ is a formula over X = {x1, . . . , xn}. For the following, let ϕ be a propositional

formula over variables X = {x1, . . . , xn}. A function I from X to {0, 1} is called a truth

assignment (or assignment) of ϕ. We now define inductively what it means that a truth

assignment I satisfies a given formula ϕ. If ϕ = xi for a variable xi, then I satisfies ϕ if

and only if I(xi) = 1. If ϕ = ψ1 ∧ ψ2 (ϕ = ψ1 ∨ ψ2), then I satisfies ϕ if and only if I
satisfies ψ1 and ψ2 (ψ1 or ψ2, resp.). This way, a propositional formula can also be seen

6

2.1 Basics

formula name description abbreviation for

ϕ id identity n/a

¬ϕ, ϕ not negation n/a

ϕ ∧ ψ and conjunction n/a

ϕ ∨ ψ or disjunction n/a

ϕ → ψ impl implication ¬ϕ ∨ ψ
ϕ ↔ ψ equiv equivalence (ϕ → ψ) ∧ (ψ → ϕ)
ϕ ⊕ ψ xor exclusive or ¬(ϕ ↔ ψ)

Table 2.1: List of important Boolean functions

as a Boolean function and for a formula ϕ over variables X = {x1, . . . , xn} we thus write

ϕ(x1, . . . , xn). Depending on the assignment, it calculates either 0 or 1. Table 2.1 gives

an overview of the most important Boolean functions. When a formula is considered

as a function, the truth assignments are usually written in form of a tuple instead of a

function. Thus, (α1, . . . , αn) ∈ {0, 1}n is said to satisfy a formula ϕ, if ϕ(α1, . . . , αn) = 1.

We denote with sat(ϕ) (unsat(ϕ)) the set of satisfying (unsatisfying, resp.) assignments

of ϕ; that is, sat(ϕ) (unsat(ϕ)) is the set A ⊆ {0, 1}n such that for every α ∈ A we have

that ϕ(α) = 1 (ϕ(α) = 0, resp.). Further we write #sat(ϕ) for |sat(ϕ)| and #unsat(ϕ)
for |unsat(ϕ)| to denote the number of satisfying respectively unsatisfying assignments of

ϕ.

There are two main normal forms of propositional formulae. One is the conjunctive

normal form (CNF) and the other is the disjunctive normal form (DNF). A formula ϕ
is said to be in CNF if it is of the form ϕ = c1 ∧ · · · ∧ cn, where ci = lj1 ∨ · · · ∨ ljmi

for

1 ≤ i ≤ n and all lk are variables or negated variables. The ci’s are called clauses and the

lk’s are literals . A DNF is similarly a disjunction of conjunctions; that is, ϕ = d1∨· · ·∨dn,

where di = lj1 ∧ · · · ∧ ljmi
for 1 ≤ i ≤ n and all lk are variables or negated variables. The

di’s are then called disjuncts and the lk’s are again literals. It can be shown that any

propositional formula can be transformed into a CNF and a DNF. If we only allow up to

three literals per clause (disjunct), the resulting formula is said to be a 3-CNF (3-DNF,

resp.).

An extension to this is a formula with quantifiers, where a quantifier is a symbol

∀ or ∃. For this we first have to introduce the notion of free variables. Let ϕ be a

formula over variables X. Then the free variables of ϕ are all occurring variables. If

ϕ is a (quantified) formula with free variables X = {x1, . . . , xn}, then ∃xiϕ and ∀xiϕ
with xi ∈ X are quantified formulae with free variables X \ {xi}. An assignment I of

the free variables satisfies an existentially quantified formula ∃xϕ if and only if there is a

value α ∈ {0, 1} such that I ∪ {x = α} satisfies ϕ. An assignment I of the free variables

satisfies a universally quantified formula ∀xϕ if and only if for all values α ∈ {0, 1}, we

have that I ∪ {x = α} satisfies ϕ. If a formula ϕ has no free variables, it is said to be

closed , and it is either true or false.

7

2 Preliminaries

2.2 Complexity

In complexity theory a main objective is to classify problems by their complexity, that is,

by their difficulty. In order to do this, we first have to clarify two things: What kind of

difficulty are we looking for? And how exactly do we measure it? For example, if the

problem is to get from one place to another, we could define the difficulty as the time

that is needed to do the journey. Another difficulty might be, how much money it takes

to do the journey. Now measuring the time seems not to be a problem (you just take a

stop watch and see how long the journey takes), whereas the measurement of money is

not so clear anymore. If you take a short trip of a few hundred metres, you can certainly

do it for free if you just walk. However, on a trip from Paris to Rome, you could also

just walk, but it would take you days and you would have to sleep and eat meanwhile,

which would probably cost you some money. So, the question is, what kind of money

is included and what is not. Also the measurement of time is not always obvious. The

fastest way from Paris to Rome is certainly to fly. However, do you include the time you

need to buy a plane ticket, get to the airport, wait for the next plane, and so on? Or do

you just take the flying time from one airport to the other?

2.2.1 A Basic Model

Our problems are of course somewhat more theoretical, though, the general principle

remains the same. You might, for example, be given a list of numbers and want to sort

them. One important complexity is, of course, the time that is needed to sort those

numbers. Similar to the practical example above, this certainly depends on the help

you have. If you do it by hand, it will take much longer than if you do it with the help

of a computer. But, even with a computer, there are large differences of speed mainly

depending on the age of the computer, but also depending on how the data is fed to

the computer. We therefore would like to have a fixed computational model, which is

supplied by the Turing machine, or short TM. Basically, a TM is an automaton with a

finite number of states. It has an infinite tape divided into cells and a head, which can

look at one cell at a time. Each cell contains exactly one out of finitely many symbols.

At the start of each run of a TM the input data is assumed to be on the tape starting

at the head’s position. Depending on the symbol at the head’s current location and the

state of the machine, it may enter a new state, may change the symbol, and afterwards

move the head one cell to the left, one cell to the right, or leave it at the current position.

Although this model is very simple, it is as powerful as any programming language. A

detailed definition of the Turing machine is omitted here, but a very good introduction

can be found in, for example, [Sip97] and [HU79].

Although a TM could produce any kind of output, we will almost only deal with TMs

for decision problems (with a little exception in Chapter 4). These are TMs designed for

a specific language and they decide, whether a word is in that language or not; that is,

they either accept or reject their input by entering a unique accepting or rejecting state.

For our purposes we still need to define four variants of such a TM.

8

2.2 Complexity

• The first one is a generalization. Instead of having only one tape, we allow the TM

to have a constant number k of tapes. Accordingly, there are also k heads, one for

each tape. Such a TM is then called k-tape Turing machine or in case k is not

known or not important, we call it a multi-tape Turing machine. The action of

the k-tape TM depends on its state and the content of the tapes at each head’s

position. All heads can be moved independently from each other.

• Another variant is that the TM has an additional input tape. This input tape is a

read-only tape. The purpose will be seen later.

• The third variant is a nondeterministic TM (NTM). In contrast to a (deterministic)

TM, an NTM is allowed to have more than one possible action for any given pair

of state and read symbol. Nondeterminism can then be explained in two ways.

The first being that whenever there is more than one possible action the NTM

could do, it branches and follows all possibilities in parallel. Each sequence of

possible branchings is called a computation path or simply path of the TM. The

NTM accepts an input if and only if at least one of those paths terminates in an

accepting state. We also call such a path an accepting path. The other explanation

is that by some “divine intuition” the TM always chooses the right action if such

exists, whenever several possibilities occur. Thus, it “guesses” a computation path

and if there is at least one accepting path, the NTM will always choose an accepting

path.

• Finally, we define the so-called oracle Turing machine. This is a general TM with

an additional oracle A. Such a TM possesses a separate write-only oracle tape

and three distinguished states q?, q0, and q1. Whenever the state q? is reached, the

TM either enters one of the distinguished states q0 or q1 depending on whether the

word on the oracle tape is in A or not. Thus, it has access to the language A with

almost no cost. Intuitively such an oracle can be considered as a subroutine of a

programming language. Except from this peculiarity the oracle TM works as usual.

A formal definition of nondeterministic and oracle Turing machines can again be found

in many text books about theoretical computer science, see, for example, [Sip97] and

[HU79] for nondeterminism and [Pap94] for oracles.

2.2.2 Complexity Classes

We finally have a palpable and well-defined model for computations, which allows us to

define complexity classes. The time that is needed to solve a problem, is defined as the

steps it takes a TM to decide it. A second important complexity is the space a TM uses

during its computation. This is defined as the number of cells on the work tape that are

being visited by the TM during its computation. For space complexity we always assume

a TM with additional input tape, but the visited cells of that tape are not considered.

However, in complexity theory we are not interested in the exact amount of steps taken

or cells visited, but just in their order of magnitude. Therefore, the O-notation is very

9

