Olayinka Akinola Akinde (Autor)

Studies on inevitable losses of amino acids and nitrogen in the Pekin duck and their consequences for maintenance nitrogen requirement

https://cuvillier.de/de/shop/publications/1753

Copyright:
Cuvillier Verlag, Inhaberin Annette Jentzsch-Cuvillier, Nonnenstieg 8, 37075 Göttingen, Germany
Telefon: +49 (0)551 54724-0, E-Mail: info@cuvillier.de, Website: https://cuvillier.de
Table of content

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2 Literature review, definitions and objectives</td>
<td>2</td>
</tr>
<tr>
<td>2.1 Theory of N maintenance</td>
<td>2</td>
</tr>
<tr>
<td>2.2 Physiological basis of N maintenance and inevitable losses</td>
<td>2</td>
</tr>
<tr>
<td>2.3 Experimental approaches to study and estimate inevitable losses</td>
<td>5</td>
</tr>
<tr>
<td>2.4 Physiological and dietary effects on inevitable losses and their implications</td>
<td>10</td>
</tr>
<tr>
<td>2.5 Practical importance of N maintenance and inevitable losses</td>
<td>12</td>
</tr>
<tr>
<td>2.6 Estimates of inevitable losses, N maintenance and N efficiency</td>
<td>13</td>
</tr>
<tr>
<td>2.7 Trends and implications in global ducks farming</td>
<td>18</td>
</tr>
<tr>
<td>2.8 Objectives of Study</td>
<td>21</td>
</tr>
<tr>
<td>3 Materials and Methods</td>
<td>22</td>
</tr>
<tr>
<td>3.1 Methodology</td>
<td>22</td>
</tr>
<tr>
<td>3.1.1 Theoretical considerations</td>
<td>22</td>
</tr>
<tr>
<td>3.1.2 Mathematical considerations</td>
<td>23</td>
</tr>
<tr>
<td>3.1.3 Consideration with respect to protein balance</td>
<td>24</td>
</tr>
<tr>
<td>3.1.4 Research locations and periods</td>
<td>25</td>
</tr>
<tr>
<td>3.1.5 Animals, housing and diets</td>
<td>25</td>
</tr>
<tr>
<td>3.1.6 General procedures for diet formulations</td>
<td>26</td>
</tr>
<tr>
<td>3.2 General procedures for balance studies</td>
<td>27</td>
</tr>
<tr>
<td>3.3 General procedures for precaecal flow studies</td>
<td>28</td>
</tr>
<tr>
<td>3.4 Specific details of individual balance experiments</td>
<td>29</td>
</tr>
<tr>
<td>3.4.1 Experiment 1: N balance of starting ducks fed varying levels of crude protein and crude fibre</td>
<td>29</td>
</tr>
<tr>
<td>3.4.1.1 Experimental design</td>
<td>29</td>
</tr>
</tbody>
</table>
3.4.1.2 Diets

3.4.1.3 Starter ducks bioassay

3.4.2 Experiment 2: N balance of adult ducks fed varying levels of crude protein and crude fibre

3.4.2.1 Experimental design

3.4.2.2 Diets

3.4.2.3 Adult ducks bioassay

3.4.3 Studies on recovery rate of Titanium dioxide

3.4.3.1 Diets

3.4.3.2 Measurements of recovery rate of Titanium dioxide

3.5 Specific details of precaecal flow studies

3.5.1 Precaecal Study I: Protein-Fibre interactions on inevitable precaecal CP and AA losses in adult ducks

3.5.1.2 Experimental design

3.5.1.3 Diets

3.5.1.4 Precaecal flow measurement I

3.5.2 Precaecal Study II: Investigations into effects of corn cob meal and supplemental fat on inevitably excreted CP and AA

3.5.2.1 Experimental design

3.5.2.2 Diets

3.5.2.3 Precaecal flow measurement II

3.6 Chemical analyses

3.7 Data handling and analysis

3.7.1 Data Validation

3.7.2 Calculations, statistical analysis and curve fitting

3.7.2.1 N balance experiments
3.7.2.1.1 Efficiency of N utilisation 46
3.7.2.1.2 Determinations of inevitable losses 46
3.7.2.1.3 Determinations of maintenance N requirement 47
3.7.2.1.4 Determinations of TiO₂ recovery rates 47
3.7.2.2 Precaecal flow studies 48
3.7.2.2.1 Measurements of inevitable precaecal losses 48
3.7.2.2.2 Measurements of precaecal digestibility and the effects of dietary factors 49

4 Results 50

4.1 Results of N Balance experiments 50

4.2 Pattern of N utilisation in ducklings and adult ducks 52

4.2.1 Efficiency of N utilisation 53

4.2.1.1 Measurement of N efficiency in ducks in relation to age and dietary crude fibre intake mainly in the form of synthetic α-cellulose 53

4.3 Inevitable N losses and maintenance requirements 57

4.3.1 Inevitable N losses and maintenance requirements in ducks and the effects of supplementary crude fibre mainly in the form of synthetic α-cellulose 57

4.3.2 Maintenance nitrogen and crude protein requirements in adult ducks and the effects of supplementary crude fibre mainly in the form of synthetic α-cellulose 58

4.4 Measurements of TiO₂ recovery in ducklings and adult ducks 64

4.4.1 TiO₂ recovery in ducklings and adult ducks 64

4.4.2 Response relationships and parameter estimates of TiO₂ excretion 67

4.5 Precaecal flow studies 70

4.5.1 Measurements of inevitable precaecal losses and precaecal digestibility of CP/AA 82
4.5.1.1 Dietary effects on inevitable precaecal losses of CP/AA 82
4.5.1.2 Comparison of estimates of IPL of CP/AA 87
4.5.1.3 Dietary effects on precaecal digestibility of CP/AA 90
4.5.1.4 Comparison of estimates of precaecal digestibility of CP/AA 92

5 Discussion 95

5.1 General discussion 95

5.2 Pattern of N utilisation in ducklings and adult ducks 96
 5.2.1 Factors affecting efficiency of N utilisation 97
 5.2.1.1 Effects of age on N efficiency 97
 5.2.1.2 Effects of crude fibre intake on N efficiency 100

5.3 Inevitable N losses and N maintenance 102
 5.3.1 Factors affecting inevitable N losses and N maintenance 102
 5.3.1.1 Effects of age and body weight 102
 5.3.1.2 Effects of crude fibre intake on inevitable losses 104
 5.3.1.3 Effects of dry matter intake 106

5.3.2 Mathematical relationships of maintenance CP requirement to the total CP requirements 107

5.3.3 Literature overview on inevitable N losses and maintenance 108

5.3.4 Partitioning of inevitable N losses into its fractions 110

5.4 Inevitable precaecal crude protein and amino acids losses 111
 5.4.1 Dietary factors affecting inevitable precaecal flow of CP/AA 112
 5.4.1.1 Effects of level and types of crude fibre supplementation 112
 5.4.1.2 Effects of dietary soybean oil supplementation 114

5.4.2 Estimates of precaecal inevitably excreted CP/AA 115

5.5 Precaecal digestibility of CP/AA in adult ducks 120