

Max Christian Funck (Autor)

Design and Analysis of Combinatorially Assembled Optical Systems

https://cuvillier.de/de/shop/publications/123

Copyright:

Cuvillier Verlag, Inhaberin Annette Jentzsch-Cuvillier, Nonnenstieg 8, 37075 Göttingen, Germany

Telefon: +49 (0)551 54724-0, E-Mail: info@cuvillier.de, Website: https://cuvillier.de

Content

1	Introd	uction	1
	1.1	State of the art – Developing high performance optical systems	2
	1.2	Goal and outline	7
2	Funda	mentals of tolerances in optical systems	9
	2.1	Manufacturing tolerances of optical components	9
		2.1.1 Description of regular manufacturing errors	9
		2.1.2 The probabilistic nature of tolerances	12
		2.1.3 Cost of tolerances	13
	2.2	Effects of errors on system performance	15
		2.2.1 Optical performance measures	15
		2.2.2 Aberrations in centered optical systems	17
		2.2.3 Aberrations in non-centered optical systems	19
		2.2.4 Zernike polynomials	20
	2.3	Tolerancing of optical systems	21
		2.3.1 Tolerance analysis	21
		2.3.2 Tolerance budget and cost optimal tolerancing	24
		2.3.3 Compensating effects of errors	26
	2.4	2.3.4 Tolerance desensitization	27
	2.4	Summary and conclusion	28
3		inatorial assembly of optical systems	29
	3.1	Combinatorial assembly - a compensation strategy	29
		3.1.1 Principles of combinatorial assembly	29
		3.1.2 The fundamental matching problem	33
		3.1.3 Variants of the matching	36
	3.2	Optimization of component matching	37
		3.2.1 Rigorous calculation	38
		3.2.2 Linear optimization	41
		3.2.3 Approximate optimization methods	44
	3.3	Application to optical systems	46
		3.3.1 Combinatorial compensation of basic system properties	47
		3.3.2 Compensation of imaging performance criteria	49
		3.3.3 Mechanical realization of modules	52
	2.4	3.3.4 Cost-efficient application of combinatorial assembly	54
	3.4	Summary and conclusion	57

4	Tolera	nce analysis and assignment	58
	4.1	Tolerance analysis concept	58
		4.1.1 Statistical quality prediction	59
		4.1.2 Tolerance analysis with secondary tolerances	61
	4.2	Computer-based tolerance simulation	62
	4.3	Tolerancing combinatorial assembly	65
		4.3.1 The tolerance region	66
		4.3.2 Matching tolerances	67
		4.3.3 Scaling with production volume	72
		4.3.4 Cost-optimized tolerances	74
	4.4	Summary and conclusion	78
5	Design	n for combinatorial assembly	79
	5.1	The effect of combinatorial assembly on desensitization	80
	5.2	Design for insensitivity and combinatorial assembly	83
		5.2.1 Changing sensitivities to match tolerance regions	84
		5.2.2 Desensitization of secondary tolerances	89
	5.3	Global optimization strategies	92
	5.4	Summary and conclusion	94
6	Examples of combinatorial assembly 95		
	6.1	Planar assembly of solid state lasers	95
		6.1.1 Centering errors of MicroSlab's pump optics	96
		6.1.2 Symmetry aspects of MicroRod	99
	6.2	Laser focusing lens	100
		6.2.1 Compensating aberration equilibria	101
		6.2.2 Compensating on-axis coma	103
7	Conclu	usion and Outlook	105
II	Biblio	graphy	109
Ш	Figures		116
IV	Abbre	viations	119
٧	Appendix		123
	1.1	Calculation of vector aberrations	123
	1.2	Tolerance laws for uniform distribution	126
	1.3	Lens data of the global optimization	128
	1.4	Details on the MicroSlab example	130
	1.5	Details on the laser focusing lens example	132