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1. Introduction

The effective dimensionality and electron correlations determine the properties of in-
teracting electron systems. Furthermore, correlation effects increase as the number of
effective dimensions decreases: for example, in three-dimensional metallic systems, the
low-energy electronic states behave as Fermi liquid quasiparticles, whereas in one di-
mension, even weak interactions break the quasiparticles into collective excitations. The
concept of a Luttinger liquid [Tomonaga’50, Luttinger’63] has recently been established
as vital to our understanding of the behavior of one-dimensional quantum systems. This
concept has led to a number of theoretical breakthroughs, in particular, this theory
characterizes the low-energy excitation spectrum as consisting entirely of independent
spin and charge density fluctuations. Over the last decade its descriptive power has
been confirmed experimentally, when high quality quantum wires have been fabricated
displaying all characteristic Luttinger liquid properties [Bockrath’99, Ishii’03].

The variety of exotic ground states, new phases of matter and quantum effects dom-
inating thermal fluctuations are only some of the phenomena that the low-dimensional
systems offer to enrich solid state physics. Moreover, the theoretical treatment is suf-
ficiently simplified in a reduced dimension allowing to solve many theoretical models
exactly. For more than 30 years the experimental realization of (quasi-)low-dimensional
compounds is not a real problem anymore: anisotropy of exchange coupling obtained
in organic spin systems reaches the values of 104:1 [Dietz’71]. It has also to be men-
tioned that the huge fundamental work made in the field of low-dimensional systems is
of great importance in three-dimensional systems as well. One of the recent examples
is given by the three-dimensional cubic system Tl2Ru2O7 which has been supposed to
evolve into a one-dimensional spin-one system with a spin gap below T = 120 K [Lee’06].
The appearance of the gap was predicted by Haldane in 1983 as an inherent property
of integer spin chain systems [Haldane’83]. But low-dimensional systems are not only
interesting from a fundamental physics point-of-view. They offer unique opportunities
for practical applications, for example building of quantum computers, high-capacious
data-storage elements and superconductors. Therefore, understanding the properties of
low-dimensional spin systems is one of the central problems in quantum magnetism.

Nevertheless, despite the fact that the field of low-dimensional magnetism developed
into one of the most active areas of today’s solid state physics, the number of unexplained
phenomena tends to increase with time. Their understanding needs a more detailed study
of the physics underlying these phenomena. In this thesis we will characterize the spin
relaxation mechanisms in one-dimensional spin systems using the electron spin resonance

1
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spectroscopy. This technique allows to directly access the spin of interest and gain
information on its relaxation processes and, in particular, on the exchange interaction
with its neighbors. The systems chosen for the present study are all structurally different
but reveal a clear one-dimensional character in their magnetic properties. In spite of
structural differences, we will show the close similarity of their relaxation behavior and
identify the dominant sources of spin relaxation common in all compounds.

Two of the systems investigated are the members of the sodium-vanadium bronze
series NaxV2O5 which acquired a paradigmatic status. The possibility to tune the vana-
dium valence between V4+ (3d1) and V5+ (3d0) allows the realization of a variety of
spin-1/2 systems with strong quantum effects. Moreover, the rich structural chemistry
of these systems, where the V ions can occur in pyramidal, tetrahedral, or octahedral
coordination, gives rise to the formation of very interesting chain-like and ladder-like
structures. β-Na1/3V2O5 which shows a metal-to-insulator transition and superconduc-
tivity under pressure is only one member of this series. This study focuses on two other
compounds with higher Na concentration: α′-NaV2O5 and η-Na9/7V2O5. The former
system reveals charge ordering phenomena [Grenier’02] and has been intensively studied
during the last decade. The latter one came only recently into the focus of interest and
we will show that its ground state can be understood in terms of exotic spin objects.

Strictly speaking, both of these systems are not ideal spin chains. α′-NaV2O5 repre-
sents a prototypical two-leg spin-ladder system, and η-Na9/7V2O5 can be described as
a zigzag-like chain. In order to make this study more conclusive, a linear spin chain
compound, TiOCl, was considered as well. The properties of this system are even more
exciting. TiOCl exhibits a spin-Peierls-like dimerization [Pytte’74] with the highest tran-
sition temperature known at the moment [Shaz’05] and undergoes a metal-to-insulator
transition under pressure [Kuntscher’06]. Furthermore, electron doped TiOCl has been
suggested to exhibit unconventional superconductivity with a TC of about room temper-
ature [Craco’06].

The course of this thesis is the following: First, we give an introduction to the micro-
scopical theory of superexchange in Chapter 2, including the generalized schemas of the
Dzyaloshinsky-Moriya and the pseudodipolar exchange. In Chapter 3, we briefly review
the properties of low-dimensional systems necessary for the following analysis. The basic
ideas of electron spin resonance spectroscopy in concentrated spin systems are given in
Chapter 4. In the following Chapters we consider three spin-chain systems: α′-NaV2O5,
where the spin relaxation can be explained by only one type of exchange interaction is
treated first, in Chapter 5. The next Chapter deals with the more involved situation in
TiOCl. Chapter 7 treats then the η-Na9/7V2O5 system. The electron spin resonance
data in this compound are even richer in features, but are crucial in determining the
nature of the low-temperature ground state. Chapter 8 is devoted to conclusions. It
is followed finally by an Appendix which contains the explicit derivation of exchange
constants in terms of a perturbation theory.
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2. Microscopic Theory of Superexchange

Exchange interaction, the major source of magnetic ordering in solids, constitutes the
head stone of the theory of magnetism. The concept of exchange coupling arose in
1927 with the Heitler-London theory of the chemical bonds [Heitler’27], and was at once
applied by Heisenberg [Heisenberg’28] to the theory of ferromagnetism. The Heisenberg
model of exchange interaction became the foundation for most of the current theoretical
treatments of cooperative magnetic phenomena. The principal feature of this model
is the assumption that the interaction Hiso between two magnetic atoms a and b in
a crystal can be expressed as Hiso = J(Sa · Sb), where J is an exchange integral and
Sα is the spin operator for the respective atom. Obviously, the sign and magnitude
of J are extremely important in determining the transition temperatures, the magnetic
structures, and indeed practically all of the fundamental magnetic properties of a crystal.
But this model does not account for any anisotropic effects.

Generally, the exchange interaction

Hex =
∑
ij

Jij Sa,iSb,j

(
i, j = {x, y, z} )

(2.1)

contains two anisotropic terms as well

Hex = J(Sa · Sb) +
1
2

∑
ij

Dij

(
Sa,iSb,j + Sa,jSb,i

)
+

(
d · [Sa × Sb]

)
. (2.2)

The second term describes the symmetric anisotropic exchange and the third term –
the Dzyaloshinsky-Moriya (antisymmetric) interaction. Both of them are considerably
smaller than the isotropic Heisenberg exchange (the first term), but have a profound
impact on the magnetic properties of crystals. Among others, they produce canted spin
arrangements and can even lead to phase transitions in the systems of lower dimen-
sion, as for instance the Berezinsky-Kosterlitz-Thouless transition in two-dimensional
lattice. Moreover, the anisotropic parts of exchange interaction seem to be the origin
of magnetism-induced ferroelectricity. A particular importance they get in spin-1/2
systems, where they represent the only one source of anisotropy.1

1 (i) Double exchange interaction which cannot be written using spin variables is beyond the scope of
this work and will only be mentioned briefly in chapter 2.2.5.
(ii) In case S > 1/2, this equation may only be the leading term of a series expansion with respect
to the total spin operators Sa and Sb, in which higher terms such as biquadratic (Sa,iSb,j)

2 occur.
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In spite of the remarkable success in the general theory of cooperative phenomena,
any rigorous treatment of exchange interactions in three-dimensional systems lies behind
the classical statistical theory. But the difficulties of quantum-mechanical treatment can
be overcome in a lower dimension: The recent field-theory calculation of the spin-1/2
quantum antiferromagnetic chain by Oshikawa and Affleck [Oshikawa’02] gives an unique
opportunity to study the exchange interactions in spin chain compounds using the rig-
orous theoretical basis. On the other hand, the large isotropic exchange (J/kB ∼ 102 K)
characteristic for one-dimensional spin systems serves as a background for compara-
tively small anisotropic contributions and makes it difficult to access them by means of
magnetic susceptibility or by inelastic neutron scattering. But the spin-spin relaxation,
measured by the electron spin resonance spectroscopy, is driven primarily by the local
fields produced by the anisotropic parts only. That makes the electron spin resonance
an ideal tool to study these fine effects.

One of the main purposes of this thesis is to investigate the influence of the exchange
interaction on the spin relaxation in low-dimensional systems both from the experimental
and the theoretical side. In this chapter we will discuss a theoretical approach, which
allows to estimate their magnitude microscopically and allows in the most ocular (and
correct) way to deal with the exchange interactions.

2.1. Exchange Mechanisms

Spin exchange correlations may only occur if the wave functions of the electron of interest
have a non negligible overlap. In case of direct overlap of the orbitals of neighboring
magnetic ions one speaks about direct exchange.

2.1.1. Direct Exchange Interaction

The Hamiltonian of direct exchange between the ions a and b has generally the form
[Eremin’72]

Hdir = −1
2
(HP + PH)

+
1
2

(∑
H|ψ1ψ2〉〈ψ1ψ2|P +

∑
P|ψ1ψ2〉〈ψ1ψ2|H

)
. (2.3)

Theoretical [Anderson’59, Gondaira’66] as well as experimental [Harris’63] estimates of this contri-
bution give the value, which is two orders of magnitude smaller than the bilinear part (2.1). In this
work we will concern only S = 1/2 systems for which this expression is fully correct. The quantities
entering into Eq. (2.2) are

J =
1

3

X
i

Jii, Dij = Jsym
ij − Jδij , J sym

ij =
1

2

`
Jij + Jji

´
;

dx =
1

2
Jasym

yz , dy =
1

2
Jasym

zx , dz =
1

2
Jasym

xy , Jasym
ij =

1

2

`
Jij − Jji

´
.
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Here |ψ1ψ2〉 ≡ |ψ1〉|ψ2〉 means the product of the wave functions of interacting electrons,
the permutation operator P =

∑
ij Pij interchanges two electrons i and j. Let us discuss

the case of one electron on each site (see Fig. 2.1). The total Hamiltonian then reads

H =
p2
1

2m
+

p2
2

2m
− Zae

2

ra1
− Zbe

2

rb2
− Zbe

2

rb1
− Zae

2

ra2
+

e2

r12
. (2.4)

Figure 2.1.: Schematical representation of two interacting electrons 1 and 2 belonging to
the ions a and b, respectively.

In terms of spin operators the Hamiltonian of direct exchange between two electrons
in the states η and ζ reads

Hηζ
dir = J dir

ηζ

[
1
2

+ 2 (sη · sζ)
]
, (2.5)

where the parameter J dir
ηζ is determined by [Schastnev’75]

J dir
ηζ = −〈η1ζ2| e2

r12
|η2ζ1〉 + 2Re 〈η|ζ〉 〈η| p2

2m
|ζ〉 − (2.6)

− | 〈η|ζ〉 |2
[
εη + εζ − 〈η|U2|η〉 − 〈ζ|U1|ζ〉 + 〈η1ζ2| e2

r12
|η1ζ2〉

]
.

Sηζ ≡ 〈η|ζ〉 represents the overlap integral. U1 and U2 are the Coulomb energies of
electrons in the field of the other atoms, εη and εζ – the Hartree-Fock energies of the
electrons in the states η and ζ, respectively:

U2 = −Zbe
2

rb1
+ 〈ζ2| e2

r12
|ζ2〉, εη|η1〉 ≡

(
p2
1

2m
− Zae

2

ra1

)
|η1〉. (2.7)

The first term in Eq. (2.6) represents the potential exchange as introduced by Anderson
[Anderson’59]. It is always negative and favors a ferromagnetic spin alignment. Detailed
calculations show [Freeman’61, Freeman’62] that J dir

ηζ is negative only in case of zero
overlap of the neighboring orbitals Sηζ = 0, otherwise the last two terms in Eq. (2.6)
will dominate and lead to an antiferromagnetic coupling.
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2. Microscopic Theory of Superexchange

Figure 2.2.: Channel model of exchange interaction [Eremin’77]. The exchange coupling
of each pair of spins Jαα′ is supposed to be mutually independent that allows
their algebraical summation (2.9).

The microscopical expression (2.6) corresponds to the exchange between a pair of spins.
In case of several electrons on one site the exchange operator is usually approximated
by the sum of individual exchange integrals J dir

ηζ depicted in Fig. 2.2: Hdir =
∑Hηζ

dir.
For detailed discussion of this ’channel model’ we refer to [Eremin’77, Eremin’80]. Here
we will consider only the case of interacting ions in the ground state what is usually the
case in magnetic resonance measurements. According to Hund’s rule they possess the
maximal spin value sη = 1

2Sa
Sa, sζ = 1

2Sb
Sb, and, hence, the spin dependent part of the

Hamiltonian of direct exchange reads

Hdir = J dir (Sa · Sb) , (2.8)

where the effective exchange integral is given by

J dir =
1

2SaSb

∑
ηζ

J dir
ηζ . (2.9)

The exchange integral (2.9) scales with the overlap squared and decreases exponen-
tially with the distance r between the spins. Therefore, direct exchange plays a large role
only for radicals [Musin’76] and in case of 90◦ metal-ligand-metal exchange geometry.
For 3d-ions it becomes negligible already at r ∼ 2.7 − 3 Å. In practice, magnetic ions a
and b are always separated by diamagnetic ions c, so that no appreciable direct overlap
is to be expected in this case. That led Kramers [Kramers’34] to propose that a strong
admixture of the cation’s and intermediate anion’s wave functions could be invoked to
couple the cations indirectly.

2.1.2. Indirect Exchange Mechanisms

It is tempting to assume, by analogy with the case of direct exchange, that exchange
coupling in case of three-center system a − c − b will be proportional to the product
of the overlap integrals Jηζ ∝ S2

ηκS2
κζ (κ is the state of the intermediate diamagnetic
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ion c). This contribution referred as Yamashita-Kondo’s mechanism is nevertheless only
marginal because the overlap integrals Sηκ are usually small compared to the covalency
parameters (i. e. hopping integrals tηκ, see Eq. A.17).

The hopping integrals tηκ characterize the kinetic energy of electrons or their desire
to delocalize. Whenever their repulsion predominates and prevents metallic conduction,
the tendency to delocalize can gain energy by spreading electrons into nonorthogonal
overlapping orbitals, naturally leading to the antiferromagnetic spin ordering. This
problem was first considered by Kramers who developed a unique method of handling
configuration interactions [Kramers’34]. The idea by Kramers is displayed in Fig. 2.3(i).
The excited configuration in which an electron has been removed from the nonmagnetic
center c and placed on a leaves an unpaired spin on c and b leading to a spin coupling
due to the direct overlap of these charge densities. The magnitude of this type of indirect
exchange can be estimated as Jηζ ∝ t2ηκS2

κζ .
Twenty years later Pratt [Pratt’55] could show that such polarization effects cannot

produce the actual antiferromagnetic spin-ordering and proposed another scheme shown
in Fig. 2.3(ii): two electrons of the diamagnetic ion are simultaneously transferred to
the magnetic ions providing an antiferromagnetic coupling. An attempt to compare the
effectiveness of all possible mechanisms of superexchange was made by Yamashita and
Kondo [Yamashita’58], but it was not possible to single out the most efficient one. In
1959, Anderson [Anderson’59] simplified and unified the various mechanisms giving rise
to superexchange interaction. He showed that the superexchange mechanism, where the
ionic configuration a+b− is obtained (see Fig. 2.4), strongly dominates all others. On
the one hand, the energy of this ionic state is higher than the energy of the unperturbed
state by an amount U = Δab, corresponding to the average electrostatic repulsion energy
for two electrons on the same site. On the other hand, the system gains kinetic energy
Jηζ ∝ t2ηκt2κζ . This delocalization stabilizes the singlet configuration, because the two

Figure 2.3.: Schematic representation of the indirect exchange between two magnetic
ions a and b via a diamagnetic ion c proposed by (i) Kramers in 1934
[Kramers’34] and (ii) Pratt in 1955 [Pratt’55]. The green arrows denote the
virtual hoppings of electrons. Numeration corresponds to the sequence of
the electron transfers.
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electrons at site b must necessarily pair up. Anderson’s approach to the theory of
superexchange interactions has become classical and will be considered in more detail in
the next section.

2.2. Isotropic Exchange Interaction

The following consideration generalizes Anderson’s approach [Anderson’59] by account-
ing directly for the states of an intermediate ion. It is based on the method of canonical
transformations which allows in a natural way to derive the constants of exchange in-
teractions using a perturbation theory. The detailed description of this method can be
found in appendix A. Here we will only use the results of these calculations, which are
needed to discuss the underlying physical processes.

First, let us introduce some notations: a+
η (aη′) and b+

ζ (bζ′) are the creation (annihi-
lation) operators of electrons on the magnetic ions, c+

κ (cκ′) – on the intervening dia-
magnetic ions. With η, ϕ, ξ we denote the orbital and spin states of the magnetic ion a
[η ≡ (nηlηmηsη)] and with ζ, θ, λ the corresponding states of the magnetic ion b. The
letters κ, ρ signify the one-electron states of the diamagnetic ion c.

2.2.1. Classical Concept: Antiferromagnetic Spin Ordering

The most effective mechanism of the isotropic superexchange between two magnetic
ions a and b via the intervening ion c as first described by Anderson [Anderson’59] is
illustrated in Fig. 2.4. By counting the involved electronic hopping processes, it becomes
evident that this mechanism corresponds to the forth order of perturbation theory with
respect to the energy of the electron hoppings.

Figure 2.4.: Schematic representation of the ”superexchange” between two magnetic ions
a and b via a diamagnetic ion c proposed by Anderson [Anderson’59]. The
green arrows denote the virtual hoppings of electrons. The Greek letters
denote the orbital states of an electron on the corresponding ion.
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Consequently, this process can be described by the Hamiltonian (A.22), which is de-
rived in the appendix. Here, we add a factor of two to this Hamiltonian

Hkin = 2 · tηρtρζtζκtκη

Δ2
acΔab

(
−1

2
+ 2(sη · sζ)

)
, (2.10)

because we also take into account the electron transfer from site a to site b. Moreover,
tηρ denotes the hopping (transfer) integral between the orbital states η and ρ, Δab ∼ U
and Δac are the electron transfer energies from ion a to the cation b and to the anion
c, respectively. The expression (2.10) represents the kinetic exchange in Anderson’s
notation and was considered to be intrinsically antiferromagnetic. This type of exchange
constitutes an isotropic antiferromagnetic exchange interaction

Hηζ
iso = Jηζ (sη · sζ) −→ Hiso = J (Sa · Sb), (2.11)

where the constant of isotropic exchange is given by

Jηζ = 4 · tηρtρζtζκtκη

Δ2
acΔab

and J =
1

4SaSb

∑
ηζ

Jηζ . (2.12)

The direct exchange (2.8) is also isotropic, but negligible as compared to the kinetic
exchange because of the large distance between the interacting ions. It is worth not-
ing, that the isotropic exchange is strongly antiferromagnetic only in case of 180◦ bond
geometry (all three ions are lying on a straight line). The deviations of the bond an-
gle θ from 180◦ can be described by introducing geometrical factors like, for example,
t(θ) ∝ −tσcosθ − tπsinθ. As we will discuss in the following, competition and quantum-
interference effects between different exchange paths can occur in some cases and can
lead to a strong ferromagnetic coupling of spins [Bencini’90, Krug’02].

2.2.2. Ferromagnetic Superexchange

Following Anderson, ferromagnetic coupling can be obtained considering two major pro-
cesses: (i) potential exchange and (ii) transfer of the electron to the unoccupied orbital of
the neighboring ion. The indirect potential exchange is, as a matter of fact, of the same
nature as the corresponding direct process. It describes the electrostatic energy of the
system as a spin-spin interaction in the basis of one-electron wave functions. Anderson’s
treatment allows to separate the part of the interaction containing the spreading of the
orbitals of the d-electrons into the neighboring ions by the modification of the local wave
functions. The exchange effect then appears as a consequence of the direct overlap of
the new longer-ranging orbitals. But this process only plays a minor role compared to
the following one.

The second mechanism is shown schematically on the left side of Fig. 2.5. This is a
fifth-order effect of transfer together with the internal exchange coupling V

(1)
mm′ = JH (see
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