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Chapter 1

Introduction

1.1 Modal, temporal, and hybrid languages

Modal logic is a powerful, easily utilisable, well-understood, and well-be-
haved formalism for describing and specifying properties of any application
that can be modelled by relational structures. Such applications (and their cor-
responding relational structures) are, for example

(1) the behaviour of things over time

(points in time and the “later-than” relation);

(2) the knowledge of agents

(states describing the knowledge of the agent together with the relation
linking actual states with possible states);

(3) verification of programmes

(states of a machine and transitions between them given by executions of
programmes).

In all these applications, modal logic offers a local perspective, that is, it allows
for describing things that happen in individual states of relational structures
and their successor states. Depending on the particular application, certain
variants (or extensions) of modal logic are used — for example, temporal (1),
epistemic (2), or dynamic (3) logic.

This thesis will not consider logics for one certain application. Therefore we
will prefer an abstract view (in terms of relational structures) to a concrete one
(as given in the above examples). However, since many of the languages we
examine are useful for temporal applications, we will often speak about them
in terms of Example (1) from above. Until we provide a formal definition of
relational structures in Chapter 2, we will call them structures or frames, and
refer to their elements as states or points.
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Hybrid languages are extensions of modal logic that allow for naming and ac-
cessing states of a structure explicitly. These features are very desirable in many
applications. Particularly in the temporal case, it is very natural to give names
to points in time and refer to them independently of the “later-than” relation.
Besides, by means of hybrid logic, it is possible to capture many temporally rel-
evant properties of structures, such as irreflexivity, antisymmetry, trichotomy,
directedness, etc. For these reasons, hybrid languages and hybrid temporal lan-
guages are of great interest where basic modal and temporal logic reach their
limits [BT99, Bla00b, ABM01, FdRS03].

Another reason for the interest in hybrid logic is discussed in [ABM99] and
[ABM00]. Hybrid languages are proof-theoretically well behaved and “inter-
nalise” labelled deduction [Bla00a], an apparatus that guides proof search in
modal logic [Gab96].

Hybrid Logic, as well as the foundations of temporal logic, goes back to
Arthur Prior [Pri67]. Since then, many — more or less powerful — languages
have been studied [Bul70, PT91, Bla93, GG93, BS95, Gor96, BS98, ABM99,
ABM00, ABM01, FdRS03]. The main features of hybrid logic that are of spe-
cial interest for this thesis are the following.

Nominals. They are special atomic propositions that give names to states — a
very natural thing for applications, particularly temporal ones. With the help
of nominals, it is possible to express properties of structures that are not ex-
pressible in modal logic, such as irreflexivity, asymmetry, etc.

The satisfaction operators. They allow for jumping to a point named by a
nominal, regardless of the accessibilities in the structure.

Hybrid binders. They allow for binding names to states dynamically and for re-
ferring to these states later on. This makes them a very powerful and desirable
means of expression, especially if they are combined with satisfaction opera-
tors. Unfortunately, due to this high expressive power, binders are dangerous
in terms of computational costs.

Furthermore, we will consider operators that occur in the context of modal
logic, too.

The “until” and “since” operators. They permit temporal statements such as:
“Until some point with property ψ, it is always the case that ϕ.” This notion
of “betweenness” cannot be expressed by the usual temporal operators, which
only allow for accessing some successor or predecessor state while immedi-
ately forgetting about the original one. Again, the increased expressivity makes
the until/since operators worthwhile, and fortunately, the computational costs
paid are not as dramatically high as in the case of hybrid binders.
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The global modality. It simply grants access to any point in the structure
and can thus be seen as a generalisation of satisfaction operators. Similarly
to the until/since operators, it adds expressive power to the language, which
sometimes makes reasoning harder.

1.2 Towards a systematic study of the complexity of

hybrid logics

This thesis systematically examines decidability and the computational com-
plexity of decision problems for a collection of hybrid languages with respect
to several classes of structures. More precisely speaking, we will establish, in
the usual terms of computational complexity theory, what amount of resources
(space, time) are necessary for an algorithm to decide each of these problems,
and whether such an algorithm exists at all. We will focus on the satisfiability
problem and provide results on the model-checking problem. These problems
ask whether a given formula from a certain hybrid logic is satisfiable in some
structure or a given structure, respectively. Decidability and the computational
complexity of decision problems are of great interest whenever those shall be
solved automatically, see [Wos85] for an introduction into automated reason-
ing.

Satisfiability for hybrid logic tends to have a high computational complex-
ity in general, which is due to the increased expressive power of hybrid lan-
guages. For instance, satisfiability for hybrid logic is known to require expo-
nential time [ABM00] in the presence of past or until operators, and to be even
undecidable if a fairly restricted form of a binder is admitted [ABM99]. This is
in contrast to modal logic, whose satisfiability problem is solvable in polyno-
mial space [Lad77]. Furthermore, model checking for modal languages is solv-
able in polynomial time, but in the presence of binders, polynomial time most
probably does not suffice because the model-checking problem is complete for
polynomial space here [FdR06].

It is well-known that many applications for modal or hybrid logic do not
require the full language or do not permit all possible frames. Hence, restrict-
ing the language and/or the class of relevant frames could be a way to “tame”
a very expressive logic. And indeed, there is much literature where very dif-
ferent complexities for more or less expressive hybrid languages over differ-
ent classes of frames have been established [ABM99, ABM00, FdRS03, tCF05b,
FdR06, MSSW05, MS07b, MS07a]. There are combinations of hybrid languages
and frame classes, for which the satisfiability problem, for instance, is known
to be complete for the complexity classes NP, PSPACE, EXPTIME, NEXPTIME,

3



Chapter 1 Introduction

N2EXPTIME; nonelementarily decidable; or even undecidable. However, we
are not aware of any systematic study that involves several frame classes and,
independently from those, a self-contained collection of hybrid languages.

Such a systematic study is pursued by this thesis and will show problems that
have not been solved in the literature yet. We will fix a set of modal, temporal,
and hybrid operators and consider a hierarchy of all hybrid languages defined
by subsets of this set of operators. We will then arrange known results from
the literature into this hierarchy, separately for several classes of frames. This
will show that there are many combinations of languages and frame classes
whose complexity is not known. We will provide results for most of them,
applying a wide range of well-known techniques for establishing lower and
upper complexity bounds in modal and hybrid logic.

We do not claim that either collection (of frame classes or languages) is com-
plete, but, at least, our study covers all hybrid languages with the most com-
monly used operators and many temporally and epistemically relevant frame
classes. Here, the notion of the “relevance of frame classes for applications”
deserves a more precise explanation.

In view of temporal applications, it is apparent that only frames with “later-
than” relations satisfying certain properties need be considered. Such proper-
ties include — but are not restricted to — transitivity, irreflexivity, or trichotomy.
(The latter refers to the condition that given two distinct points, at least one
is related to the other.) One of the most special frame class in this context is
the class that consists of only one frame, namely the natural numbers with the
greater-than relation. This class underlies the widely used and well-understood
Linear Temporal Logic (see, e.g., [CGP01]) and represents a discrete view on
time. It is possible to consider the integers or the reals instead of natural num-
bers [Rey92]. Furthermore, there are two generalisations of these singleton
frame classes. One is the class of linear frames that merely requires the above
three properties and contains frames with discrete as well as dense flows of
time (among them, the natural numbers, integers, and reals). Another generali-
sation is the class of transitive trees that adds branching to the natural numbers
and underlies the expressive Computation Tree Logic (which is described in
[CGP01], too).

For epistemic applications, equivalence relations and weaker notions are nec-
essary to model knowledge and belief of agents [FHMV95, Section 3.1]. If the
states and accessibility relations in a frame are to represent possible worlds
of agents and if the agents’ knowledge or beliefs are assumed to satisfy cer-
tain soundness properties (in particular: only true things are known/believed,
and the agent is aware of what she knows/believes and what she does not
know/believe), then this is captured by equivalence relations. If some of the
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soundness properties are abandoned or weakened, then one has to use more
general kinds of relations.

For both kinds of applications, transitivity plays a very important rôle. First,
in all of the above examples of temporally relevant frame classes, the future
relation is transitive (and has other properties as well). The class of transitive
frames is a general case of all these temporal applications. Second, transitivity
is similarly fundamental in epistemic applications because it corresponds to
the property that agents are aware of their knowledge or their belief. As in the
temporal case, other properties can — but need not — be added, but transitivity
is rarely left out.

Modal, hybrid, and first-order logics over transitive models have been stud-
ied recently in [ABM00, GMV99, ST01, Kie02, Kie03, IRR+04, DO05]. Although
the complexity of satisfiability for hybrid (temporal) logics has been extensively
examined [BS95, Gor96, ABM99, ABM00, FdRS03], there are highly expressive
hybrid languages for whose satisfiability problems only results over arbitrary,
but not over restricted, temporally or epistemically relevant frame classes have
been known. This confirms the need for a classification of complexity for satis-
fiability of hybrid logic over such frame classes.

Furthermore, for the (general) model checking problem, only results over
arbitrary frames have been known [FdR06]. We will find out whether the
above mentioned level of complexity for binder languages persists if we re-
strict the class of frames. (The word “general” means that we will examine
the model-checking problem considered in [FdR06], restricted to certain classes
of frames, as opposed to the linear-time model-checking problem from [SC85]
and [FdRS03].)

The frame classes that we will consider are the class of all frames, transitive
frames, transitive trees, linear frames, the natural numbers, frames with equiv-
alence relations, and complete frames.

1.3 The complexity of multi-modal hybrid logics

The classification of the satisfiability problem for hybrid languages over differ-
ent frame classes will show that satisfiability for the language with the more
restricted form of a hybrid binder, which is undecidable over arbitrary frames
[ABM99], will become decidable over transitive frames [MSSW05]. We will not
only show that satisfiability for languages combining this binder with other
operators is undecidable over transitive frames. We will also examine another
extension of this binder language over a wide range of frame classes, namely
its multi-modal version. Our (undecidability) results will cover, among others,
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frame classes that are important for epistemic applications, because the multi-
modal setting corresponds to multi-agent scenarios.

1.4 Legend to this thesis

This thesis is organised as follows. In Chapter 2, we will give all definitions and
notations that are necessary for modal, temporal, hybrid, and first-order logic.
We will also introduce the basic concepts of computational complexity and
tools used to establish complexity bounds of certain logics. Chapter 3 is con-
cerned with expressivity issues and establishes hierarchies of hybrid languages
over different classes of frames. Chapters 4 and 5 examine the model-checking
problem and satisfiability of hybrid languages over these frame classes. Sat-
isfiability of multi-modal binder logic is considered in Chapter 6. Chapter 7
gives an overview of all achieved results and contains remarks on each group
of results from the previous chapters.

Parts of this thesis have appeared in proceedings of workshops or in jour-
nals. In particular, Sections 5.4 and 5.5 contain results from [MSSW05] and
[MSSW07], Section 5.8 has appeared as [MS07a], and Chapter 6 improves on
[MS07b].
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Chapter 2

Preliminaries

2.1 Hybrid logic

We define the basic concepts and notations of modal and hybrid logic that are
relevant for this thesis. The fundamentals of modal logic are mainly taken from
[BdRV05]; those of hybrid logic from [ABM99, Bla00b, AtC06].

2.1.1 Syntax

As indicated in the previous chapter, the hybrid language does not exist. Rather
there are several extensions of the modal language that allow for explicit ref-
erences to states and incorporate very restricted versions of first-order quan-
tifiers — hence the attribute “hybrid”. We will introduce the largest and most
expressive hybrid language that will interest us in this thesis. It contains four
temporal operators, two hybrid binders, satisfaction operators, and the global
modality. Later on, we will define fragments of this full language.

We will give the syntax of hybrid logic inductively in the usual manner. For
Boolean, modal, and hybrid operators that appear in duals, Definition 2.1 gives
only the “existential” operators ⊥, ∨, F, etc. in the induction and defines the
remaining operators as abbreviations.

Definition 2.1 Let PROP be a countable set of propositional atoms, NOM be a
countable set of nominals, SVAR be a countable set of state variables, and let
ATOM = PROP∪NOM∪ SVAR.

(1) The full hybrid language HL(F, P, U, S, ↓, ∃, @, E) is the set of all formulae of
the form

ϕ ::= a | ⊥ | ¬ϕ | ϕ ∨ ϕ′ | Fϕ | Pϕ | ϕUψ | ϕSψ | ↓ x.ϕ | ∃x.ϕ | @t ϕ | Eϕ ,

where a ∈ ATOM, t ∈ NOM∪ SVAR, and x ∈ SVAR.
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(2) We use the following abbreviations.

	 = ¬⊥ Gϕ = ¬F¬ϕ

ϕ ∧ ψ = ¬(¬ϕ ∨ ¬ψ) Hϕ = ¬P¬ϕ

ϕ → ψ = ¬ϕ ∨ ψ ∀x.ϕ = ¬∃x.¬ϕ

ϕ ↔ ψ = (ϕ → ψ) ∧ (ψ → ϕ) Aϕ = ¬E¬ϕ

(3) Let ϕ be a formula and x be a state variable.

• For any occurrence of the ↓ or ∃ operator in ϕ that begins a subfor-
mula ↓ x.ψ or ∃x.ψ of ϕ, its scope is ψ.

• Any occurrence of x in ϕ is called bound iff it is within the scope of
some occurrence of the ↓ or ∃ operator in ϕ.

• x is free in ϕ iff it does not occur bound in ϕ.

(4) A hybrid formula is called

• pure iff it contains no propositional atoms;

• nominal-free iff it contains no nominals; and

• a sentence iff it contains no free state variables.

(5) For each formula ϕ, we use PROP(ϕ), NOM(ϕ), and SVAR(ϕ) to denote,
respectively, the set of all atomic propositions, nominals, and state vari-
ables that occur in ϕ.

It is common practice to denote propositional atoms by p, q, . . . ; nominals by
i, j, . . . ; and state variables by x, y, . . . . The operators F, G, P, H, U, and S are
called temporal operators, ↓, ∃, and ∀ are called hybrid binders, @t are satisfaction
operators, and E and A are referred to as global modalities. The operators ∧, G, H,
∀, and A are said to be the duals of ∨, F, P, ∃, and E, respectively.

2.1.2 Semantics

Semantics is defined in terms of Kripke models. In order to evaluate formu-
lae with binders, an assignment from the set of all state variables to the set of
states is necessary. This assignment can be omitted whenever binder-free sub-
languages or only sentences are considered.

Definition 2.2

(1) A frame is a pair F = (M, R) with the following components.
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