
Chapter 1

Introduction

The work presented in the following was motivated by an ongoing cooper-
ation between the Konrad-Zuse-Zentrum für Informationstechnik and the
DFN-Verein zur Förderung eines Deutschen Forschungsnetzes e.V . The
DFN-Verein is a non-profit organization established to promote computer-
based communication and information services for research, development,
and education in Germany. Among other activities, the DFN-Verein op-
erates the Deutsches Forschungsnetz DFN, which is Germany’s national
research and education network. Connecting universities, research centers,
schools, libraries and other institutions from all over Germany, it provides
high-performance communication infrastructure for the German research
and education community. Being connected to the global Internet and to
the European backbone network Géant, the DFN is an integral part of the
worldwide system of research and education networks. Between 2000 and
2006 the national backbone of the DFN was the Gigabit Wissenschaftsnetz
G-WiN, since 2006 it is the so-called X-WiN.

One of the main tasks of the DFN is to provide IP connectivity of proven
high quality among the participating institutions. The network must not
only be able to handle the large data streams arising in scientific applica-
tions, it must also meet the high Quality-of-Service standards required for
multimedia applications such as video lectures or video conferences. For
this reason, G-WiN and X-WiN have been implemented as (virtual) private
networks and are managed directly by the DFN-Verein.

1.1 Focus of this Thesis

In this thesis, we investigate optimization problems that arise in the plan-
ning and operation of IP networks such as G-WiN or X-WiN. In principle,
these are the same problems that arise in planning of other communication
networks: In the very long-term strategic network planning, the network
provider or operator must decide about the future node locations, network
hierarchies if necessary, and transmission technologies. In long- to mid-term
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planning, the provider typically wishes to find an optimal (re)design of the
network. This involves decisions concerning the network topology, the hard-
ware and capacity installation, and the routing of the traffic demands. The
goal of these long-term problems usually is to minimize (an estimation of)
the total network cost. Finally, in the short-term operational planning, the
network operator’s goal is to make the best possible use of the available net-
work resources. Usually, this means to reconfigure the traffic flows according
to performance objectives – often in response to traffic demand changes –
but leaving the network’s topology and hardware configuration unchanged.
In practice, this task is called traffic engineering.

A particular issue in IP networks is the way the traffic is routed through
the network and the way this routing can be controlled by the network
operator. Frankly, each data packet is sent along a shortest path towards
its destination. Depending on the technical implementation of the routing
protocol, all packets sent from one origin to one destination have to follow
the same path or may be distributed among all shortest paths. The only
mechanism to control this routing is to modify the metric that is used to
compute the shortest paths. The main advantages and reasons for the pop-
ularity of this routing scheme are its simplicity and its robustness. It can be
implemented in a distributed fashion, it is inherently robust against network
failures, and it requires no centralized routing management. Because packet
forwarding decision depend only on the destination address, it also scales
much better with the network size than routing schemes that are based on
pre-configured end-to-end paths. On the other hand, shortest path routing
is less bandwidth efficient than other routing schemes and it is extremely
complicated from the network planning perspective. Because all routing
paths are based on the same shortest path metric, the attempt to change
one end-to-end routing path by fiddling around with this metric will affect
other routing paths, too. In contrast to many other routing schemes, there
are strong and rather complicated interdependencies among the end-to-end
paths that comprise a valid routing. Therefore, the routing paths in an IP

network can be controlled and modified only together as a whole. Finding
a metric that induces a set of globally efficient paths is one of the most
important and most difficult problems in IP networks.

In this thesis, we consider the unsplittable shortest path routing variant.
In this shortest path routing version, each traffic demand shall be sent un-
split via a single path from its origin to its destination. Accordingly, the
metric must be chosen such that the shortest paths are uniquely determined
for all demand node pairs. This routing version is used in the G-WiN and
in the X-WiN.
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1.2 Contributions of this Thesis

The main contributions in this thesis can be summarized as follows:

1. We prove that the problem of finding an integer-valued metric that in-
duces a prescribed set of unique shortest paths and minimizes the longest
arc or the longest path length is APX -hard. Previously, it was even open
if these problems are NP-hard or not. The proof is given Chapter 4.

2. We introduce an independence system characterization for unsplittable
shortest path routings. For every digraph, the family of all path sets
that comprise an unsplittable shortest path routing forms an indepen-
dence system. The circuits in this independence system are inclusion-
wise minimal path sets that cannot be realized as an unsplittable short-
est path routing. We present a simple greedy algorithm that finds such
an inclusion-wise minimal conflict in a given path set that is not an un-
splittable shortest path routing in polynomial time. Furthermore, we
show that the problem of finding a minimum cardinality or minimum
weight such conflict is NP-hard to approximate within a constant factor
less than 7/6. Analogous results are shown for an alternative indepen-
dence system characterization of unsplittable shortest path routings by
so-called forwardings. The two independence system characterizations
and the related results are contained in Chapter 5.

3. We thoroughly analyze the computational complexity of the basic net-
work design and traffic engineering problems with unsplittable shortest
path routing in Chapter 6. We show that, for a given capacitated digraph
and a given set of commodities, the minimal congestion that is achievable
with unsplittable shortest path routing may be a factor of Ω(|V |2) larger
than the minimum congestion that is achievable with unsplittable flow
routing, with shortest multi-path routing, or with fractional multicom-
modity flow routing in general. We also prove several inapproximability
results for unsplittable shortest path routing problems that are harder
than the best known results for the corresponding unsplittable flow prob-
lems. For example, we show that it is NP-hard to a approximate the
minimum congestion that is is achievable with unsplittable shortest path
routing within a factor of O(|V |1−ε) for any ε > 0. Several polynomial
time approximation algorithms are discussed as well.

4. We develop a practically useful mixed-integer linear programming ap-
proach to solve real-world network design and traffic engineering prob-
lems with unsplittable shortest path routing. Our approach decomposes
the problem of finding an optimal unsplittable shortest path routing into
the two subproblems of finding the optimal end-to-end routing paths and,
afterwards, finding a routing metric that induces exactly these paths. The
formulations we propose to compute the end-to-end routing paths do not
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involve the routing lengths, but instead rely on the independence sys-
tem characterization of unsplittable shortest path routings. This leads to
mixed-integer linear programs that are smaller and stronger than those
obtained with the traditional formulations involving also variables for the
routing metric. The integer programming models, valid inequalities, and
our implementation of this approach are described in Chapters 7 to 9.

1.3 Organization

This thesis is divided into three major parts. Part I is concerned with
the combinatorial properties of those path sets that comprise unsplittable
shortest path routings and with problems that are related to these path sets.
In Part II, we study the computational complexity of basic network design
and traffic engineering problems. In Part III, we finally develop an integer
linear programming approach to solve network design and routing planning
problems with unsplittable shortest path routings to optimality.

The two Chapters 2 and 3 precede these three parts. Chapter 2 serves
as reference to the basic mathematical notions and notations used in this
thesis. In Chapter 3, we describe the practical background, introduce the
mathematical notions related to unsplittable shortest path routing, and for-
mally define three basic planning problems that are considered throughout
this thesis.

Part I is dedicated to the combinatorics of unsplittable shortest path
routings and their compatible metrics. It comprises the two Chapters 4
and 5. Chapter 4 deals with the problem of finding a metric that induces a
set of prescribed unique shortest paths or proving that no such metric exists.
A problem version where the entire end-to-end paths are given and another
version where only some arcs on these paths are given are considered. We
review two linear programming formulations that can be used to solve these
problems, provided the arc lengths of the metric are allowed to be fractional
or arbitrarily large. We also show that the problems become computational
hard if the arc lengths must be small integers, which is required in practice.
Both the problem variant of finding integer arc lengths that minimize the
longest arc length as well as the variant of finding integer arc lengths that
minimize the longest path length are proven to be APX -hard.

In Chapter 5, we study the combinatorial properties of unsplittable short-
est path routings and discuss some related problems. We introduce an inde-
pendence system which completely describes all those paths sets that corre-
spond to an unsplittable shortest path routing. All previously known prop-
erties of these path sets, which are also reviewed (and generalized) in this
section, are insufficient to characterize unsplittable shortest path routings.
The independence system description cannot be represented by a finite list of
forbidden path configurations of finite size (as most of the previously known
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properties), but algorithmically it can be verified efficiently. We present a
simple polynomial time algorithm that, given an arbitrary path set, either
asserts that these paths form an unsplittable shortest path routing or finds
an inclusion-wise minimal conflict among these paths. This result allows us
to model and solve unsplittable shortest path routing problems the way we
do in Part III of this thesis. The related optimization problems of finding
an cardinality or weight minimal conflict in a given path set are both shown
to be NP-hard to approximate within a factor of 7/6− ε. We also consider
the opposite problem of finding a maximal set of paths that form an un-
splittable shortest path routing. We present a polynomial time algorithm
to find an inclusion-wise maximal such set in a given path set, and we show
that the corresponding maximum cardinality and maximum weight versions
are NP-hard to approximate within a factor of 8/7 − ε. Analogous results
are obtained for the arc-flow representation of unsplittable shortest path
routings.

Part II of this thesis consists of Chapter 6 only. In this part, we discuss
the relation between unsplittable shortest path routing and several other
routing schemes and we study the computational complexity of the three
basic unsplittable shortest path routing problems introduced in Chapter 3.
We construct examples where the lowest possible link congestion that can
be obtained with unsplittable shortest path routing exceeds the congestion
achievable with multicommodity flow routing, shortest path routing with
traffic splitting, or unsplittable flow routing by an arbitrarily large factor.
We also show that the congestion minimization problem Min-Con-USPR is
NP-hard to approximate within a factor of O(|V |1−ε), that the fixed charge
network design problem FC-USPR is NPO-complete, and that the capaci-
tated network design problem Cap-USPR is inapproximable within a factor
of O(2log1−ε|V |) in the directed and a factor of 2 − ε in the undirected case.
These results indicate that network design and routing optimization prob-
lems are indeed harder for unsplittable shortest path routing than for other
routing schemes – both from the theoretical and from the practical point of
view. In addition, we derive polynomial time approximation algorithms for
various general and special cases of the considered problems.

In Part III of this thesis, we finally present a mixed–integer linear pro-
gramming approach to solve network design and routing planning problems
with unsplittable shortest path routing to optimality. This part consists of
the three Chapters 7, 8, and 9. In Chapter 7, the basic mixed–integer linear
programming models are introduced. In contrast to previous integer pro-
gramming models for these (and similar) problems, our formulations contain
no variables for the routing lengths. Instead, we introduce new inequalities
to describe the valid routings in terms of arc or path routing variables only.
For any feasible end-to-end routing computed with these models, a compat-
ible routing metric can be easily computed in a post-processing step. We
present two different formulation types – one based on path-flow variables
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and the other one based on arc-flow variables, discuss the strength of their
linear relaxations, and analyze the computational complexity of the respec-
tive separation and pricing problems. Several classes of valid inequalities for
these models are discussed in Chapter 8.

In Chapter 9, we finally describe our implementation of the integer linear
programming approach. Here we extend the basic mixed–integer linear pro-
gramming models presented in Chapter 7 to the more realistic ones that have
been used to solve the network design and traffic engineering problems for
the DFN networks, describe the algorithm used to solve the problems, and
finally report on the computational results obtained for the DFN networks
G-WiN and X-WiN and for several benchmark instances.



Chapter 2

Mathematical Preliminaries

In the following, we review the basic definitions and concepts in linear alge-
bra, graph theory, and computational complexity that are used throughout
this thesis. This description does not serve as an introduction to these ar-
eas, it is meant only as a reference for the notions and notations used in
the following chapters. We expect the reader to be familiar with the basic
concepts treated here.

For an introduction into linear algebra, integer linear programming, and
polyhedral combinatorics we recommend the books of Grötschel et al. [103],
Nemhauser and Wolsey [146], and Schrijver [175]. The concepts in graph
and hypergraph theory needed in this thesis are very basic and can be found
in the textbooks of Berge [29] or Bondy and Murty [39], for example. For an
introductory survey on independence systems and matroid theory see Welsh
[189] or Bixby and Cunningham [32]. The basic concepts and notions in the
field of computational complexity date back to Karp [121] and Garey and
Johnson [96]. Papadimitriou [154] and Ausiello et al. [10] introduced the
notions and complexity classes related to the approximability of problems,
which are used throughout this thesis.

2.1 Linear Algebra

We denote the sets of real, rational, and integer numbers by R, Q, and Z,
respectively. For the non-negative real, rational, and integer numbers, we
use the symbols R+, Q+, and Z+. The set of natural numbers without zero is
denoted by N. Given a real number x ∈ R+, �x� denotes the largest integer
number not larger than x and �x� denotes the smallest integer number not
smaller than x.

For a base set K and a finite index set E, KE is the set of vectors consisting
of |E| components with values in K. Each component of a vector x ∈ KE is
indexed by an element e ∈ E, i.e., x = (xe)e∈E. For [n] := {1, . . . , n} with
n ∈ N, we simply write Kn for K[n]. Given a set F ⊆ E, the vector χF ∈
{0, 1}E defined as χF

e = 1 for all e ∈ F and χF
e = 0 for all e ∈ E \F is called
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the incidence vector (or characteristic vector) of F . Conversely, the set
Fx := {e ∈ E : xe = 1} is called the incidence set (or characteristic set)
of a vector x ∈ {0, 1}E. More generally, we say that Sx := {e ∈ E : xe �= 0}
is the support of a vector x ∈ RE . The vectors of all 0’s and of all 1’s are
denoted by 0 := χ∅ and 1 := χE, respectively.

Unless states otherwise, each vector is considered as a column vector and
the superscript ‘T’ denotes the transposition of a vector. Addition of vec-
tors, multiplication of vectors with scalars, and inner and outer products of
vectors are defined as usual. For any finite set E, RE and QE are vector
spaces over the fields R and Q, respectively. Given two vectors x, y ∈ RE,
we write x ≤ y if xe ≤ ye for all e ∈ E, and x �= y if xe �= ye for some e ∈ E.

A vector x ∈ RE is a linear combination of the vectors x1, x2, . . . , xk ∈
RE, if there exists some λ ∈ Rk with x =

∑k
i=1 λixi. If, in addition,

λ ≥ 0
λT 1 = 1

λ ≥ 0, λT 1 = 1

⎫⎪⎬
⎪⎭ we call x a

⎧⎪⎨
⎪⎩

conic
affine
convex

⎫⎪⎬
⎪⎭ combination

of the vectors x1, x2, . . . , xk. These combinations are proper, if λi > 0 for
all i = 1, . . . , k. Given a non-empty set X ⊆ RE , the symbols

lin(X)
cone(X)
aff(X)
conv(X)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

denote the

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

linear
conic
affine
convex

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

hull of the elements in X.

We say that a set X ⊆ RE is linearly or affinely independent, if none
of its members is a proper linear or affine combination of the elements in
X, respectively, otherwise X is called linearly or affinely dependent. The
linear or affine rank of a set X ⊆ RE is the maximum number of linearly or
affinely independent vectors in X. The dimension dim(X) of a set X ⊆ RE

is the affine rank of X minus 1. A set X ⊆ RE with dim(X) = |E| is called
full-dimensional.

2.2 Linear and Integer Linear Programming

Any vector a ∈ Rn, a �= 0, and any scalar α ∈ R together define a linear
inequality aT x ≤ α with variables x ∈ Rn. The set of all solutions x ∈ Rn

to this inequality is the half-space {x ∈ Rn : aT x ≤ α} in Rn. The set
of all solutions to the corresponding linear equality aT x = α defines the
hyperplane {x ∈ Rn : aT x = α}.

A matrix A ∈ Rm×n and a vector b ∈ Rm define a system of linear
inequalities Ax ≤ b for the variables x ∈ Rn. Its solution set PA,b :=



2.2. Linear and Integer Linear Programming 9

{x ∈ Rn : Ax ≤ b} is called a polyhedron. Every polyhedron is the
intersection of finitely many half-spaces. A polyhedron that is bounded
(i.e., is contained in the convex hull of finitely many vectors) is called a
polytope. A polyhedron that is also a cone is called a polyhedral cone.

An inequality aT x ≤ α is valid for a polyhedron P if P ⊆ {x ∈ Rn :
aT x ≤ α}. For any valid inequality aT x ≤ α, the set F (P, a, α) := {x ∈
P : aT x = α} is the face of P defined (or induced) by aT x ≤ α. If
F (P, a, α) �= ∅, then the inequality aT x ≤ α is called tight with respect to
P . If F (P, a, α) = {v}, then v is called a vertex of P . If F (P, a, α) �= ∅
and dim(F (P, a, α)) = dim(P ) − 1, then F (P, a, α) is a facet of P and
aT x ≤ α is said to be a facet-defining inequality for P . The facets of
a polyhedron are its inclusion-wise maximal faces. If P is full-dimensional,
then the inequality defining a facet is unique up to scaling by a non-negative
factor, i.e., if aT x ≤ α and bT x ≤ β are both facet defining for P and
F (P, a, α) = F (P, b, β), then a = λb and α = λβ for some λ ∈ R+.

Whether or not a system of linear inequalities has a solution can be char-
acterized by the following lemma.

Lemma 2.1 (Farkas [87]) A system of linear inequalities Ax ≤ b with
A ∈ Rm×n and b ∈ Rm has a solution x ∈ Rn, if and only if there does not
exist a vector y ∈ R+ with yT A = 0T and yT b < 0.

Given a matrix A ∈ Rm×n, a vector b ∈ Rm, and a vector c ∈ Rn, the linear
programming problem (in standard form) is to find a vector x∗ ∈ PA,b

that maximizes the linear function cT x. This problem is written as

max{cT x : Ax ≤ b, x ∈ Rn} . (P)

A vector x ∈ Rn satisfying Ax ≤ b is called a feasible solution of (P). A
feasible solution x∗ is an optimal solution of (P), if cT x∗ ≥ cT x for all
feasible solutions x of (P). The set of all optimal solutions of (P) is a face
of the polyhedron PA,b.

With every linear program (P) one can associate the so-called dual linear
program

min{yT b : yT A = cT , y ∈ Rm
+} (D)

with variables y ∈ Rm
+ . The original linear program (P) is also called the

primal program. The following fundamental theorem describes the connec-
tion between the primal and the dual linear program

Theorem 2.2 (Linear Programming Duality) Let A ∈ Rm×n, b ∈ Rm,
and c ∈ Rn, and consider the corresponding primal and dual linear programs
(P) and (D).


