

Andreas Reisinger (Autor)

Chemistry with Weakly Coordinating Anions - Strong Brønsted Acids and Group 11 Metal Complexes

https://cuvillier.de/de/shop/publications/1810

Copyright:

Cuvillier Verlag, Inhaberin Annette Jentzsch-Cuvillier, Nonnenstieg 8, 37075 Göttingen, Germany Telefon: +49 (0)551 54724-0, E-Mail: info@cuvillier.de, Website: https://cuvillier.de

Table of Contents

1.	CHEM	ISTRY	WITH	WEAKLY	C	OORD	INATIN	G ANIO	NS –
INTI	RODUCI	FION AN	ND THE	ORETICAI	LBA	ACKG	ROUND)	7
2.	OBJEC	TIVES	OF THE	E THESIS					21
3.	STRON	G BRØ	NSTED	ACIDS					23
3.1.	Known Br	ønsted acids	s of type [H	$[(L)_2]^+ (L = Me_2O)$	D , Et ₂	O, THF)			23
3.2.	Synthesis a	and charact	erization of	[HL ₂] ⁺ [Al(OR) ₄]	4]" (L =	= Me ₂ O, I	Et ₂ O, THF;]	$\mathbf{R} = \mathbf{C}(\mathbf{CF}_3)_3)$	24
3.2.	. Synthe	sis							24
3.2.2	. Therm	odynamics o	of the Forma	tion of 1 to 3					26
3.2.	. NMR S	Spectroscopy	у						27
3.2.4	. Vibrati	onal Spectro	oscopy						30
3.2.:	Solid S	State Structur	res						38
3.3.	On the stru	ucture of [H	$[(Et_2O)_2]^+$						40
3.4.	Lewis acid-base complexes L-Al(OR) ₃ (L = Me ₂ O, Et ₂ O; R = C(CF ₃) ₃) – Decomposition f						products		
	on the way	to Brønste	d acid salts						45
4.	SILVE	R ETHE	NE CO	MPLEXES					49
4.1.	Known All	kene comple	exes of grou	ip 10 and 11 meta	tals				49
4.2.	Synthesis a	and Charact	terization						51
4.2.	. Synthe	sis							51
4.2.2	. NMR S	Spectroscopy	у						53
4.2.	. Vibrati	onal Spectro	oscopy						61
4.2.4	. Solid S	State Structur	res						63

4.3.	Calculated structures of the cations $M(C_2H_4)_n$ (M = Na ⁺ , Pd, Ag ⁺ ; n = 1 - 3)	71
4.4.	Thermodynamic considerations based on Born-Haber Cycles: Implications for the ga	s phase 75
4.5.	The C=C Bond Distances of coordinated C_2H_4 : X-ray Data vs. Stretching Free Experiment vs. Theory	equency and 78
4.6.	Structure of $Ag(C_2H_4)_3^+$ in comparison to $M(C_2H_4)_3$ (M = Cu ⁺ , Ni, Pd, Pt)	85
4.7.	Bonding in $Ag(C_2H_4)_3^+$ in comparison to $M(C_2H_4)_3$ (M = Pd, Na ⁺)	86
5.	SILVER ETHYNE COMPLEXES	95
5.1.	Known Alkyne complexes of group 10 and 11 metals	95
5.2.	Synthesis and Characterization of $Ag(C_2H_2)_n^+$ (n = 1 - 4)	96
5.2.	1. Synthesis	96
5.2.	2. NMR Spectroscopy	98
5.2.	3. Vibrational Spectroscopy	100
5.2.4	4. Solid State Structures	103
5.3.	Calculated Molecular Geometries of $Ag(C_2H_2)_n^+$	111
5.4.	Complexation energies	121
5.5.	Thermodynamic considerations based on Born-Haber Cycles: Implications for the ga	s phase 125
5.6.	C≡C Bond Distance and Stretching Frequency – Theory vs. Experiment	127
5.7.	Experimental charge density study of AgC ₂ H ₂ Al(OC(CH ₃)(CF ₃) ₂) ₄ (1)	135
5.8.	Structural preferences and relations of the $Ag(C_2H_2)_n^+$ complexes	139
5.9.	Nature of the bonding in $Ag(C_2H_2)_2^+$	141
5.10.	Comparison of ML_2 (M = Ag ⁺ , Pd, Na ⁺)	145
5.11.	Bonding in $Ag(C_2H_2)_n^+$ (n = 1 - 4)	146

6. FURTHER WEAKLY BOUND LEWIS ACID-BASE COMPLEXES WITH L = CH_2CL_2 , C_4H_8 AND CO 149

- 6.1. Reactions of Ag[Al(OR^F)₄] with CO Synthesis and characterization of Ag(CO)[AlOC(CH₃)(CF₃)₂)₄] and Ag(CH₂Cl₂)₂[AlOC(H)(CF₃)₂)₄] 150
- 6.2. Reactions of Ag[AlOC(CH₃)(CF₃)₂)₄] with 1,1-C₂H₂F₂ Synthesis and characterization of Ag(CH₂Cl₂)[AlOC(CH₃)(CF₃)₂)₄] 153
- 6.3. Reactions of Ag[AlOC(CH₃)(CF₃)₂)₄] with 1,1-C₂H₂Me₂ Synthesis and characterization of Ag(C₂H₂Me₂)[AlOC(CH₃)(CF₃)₂)₄]
 155
- 6.4. Trends in solid state structures of various Ag⁺ complexes Anion Effects and Silver Ion Affinity
 157

7. INTRODUCTION OF NEW METAL CATIONS – CU(I) HALIDE METATHESIS 163

7.1. (General considerations based on Born Haber cycles and <i>ab initio</i> calculations		
7.2.	Sy	nthesis and Characterization of Cu(C ₂ H ₄) ₃ [Al(OC(CF ₃) ₃) ₄]	165	
7.2.	1.	Synthesis	165	
7.2.	2.	NMR Spectroscopy	166	
7.2.	3.	Vibrational Spectroscopy	167	
7.2.	4.	Solid State Structure	170	

8. SYNTHESIS AND APPLICATIONS OF $AGOC(CF_3)_3$ – THE FIRST SILVER ALKOXIDE 173

8.1. Introduction to group 11 metal alkoxides and [M₃X₂] (M = group 10, 11) cage compounds 173
8.2. Syntheses 175

0.2	CL		170
8.3.		aracterization of MOC(CF_3) ₃ (M = Li, Ag)	178
8.3.	1.	NMR spectroscopy	178
8.3.	2.	Vibrational Spectroscopy	179
8.3.	3.	Solid State Structures	181
8.4.	Ch	aracterization of $[(AgL)_3(OR^F)_2][Al(OR^F)_4]$ (L = C ₂ H ₄ , C ₄ H ₈)	186
8.4.	1.	NMR Spectroscopy	186
8.4.	2.	Vibrational Spectroscopy	188
8.4.	3.	Solid State Structures	192
8.5.	On	the structure of $Ag_3X_2^+$	195
9.	SU	JMMARY AND OUTLOOK	197
10.	E	XPERIMENTAL PART	205
10.1.	Ge	neral procedures	205
10.2.	Syı	ntheses of the compounds described in section 3	213
10.2	2.1.	$[H(OEt_2)_2]^+[Al(OC(CF_3)_3)_4]^-(1)$	213
10.2	2.2.	$[H(THF)_2]^+[Al(OC(CF_3)_3)_4]^-(2)$	214
10.2	2.3.	$[H(OMe_2)_2]^+[Al(OC(CF_3)_3)_4]^-(3)$	215
10.2	2.4.	$Et_2O-Al(OC(CF_3)_3)_3$ (4)	216
10.3.	Syı	ntheses of the compounds described in section 4	216
10.3	3.1.	$Ag(C_2H_4)[Al(OC(CH_3)(CF_3)_2)_4]$ (6)	217
10.3	3.2.	$Ag(C_2H_4)_2[Al(OC(H)(CF_3)_2)_4]$ (7)	217
10.3	3.3.	$Ag(C_2H_4)(CH_2Cl_2)_2[Al(OC(CF_3)_3)_4]$ (8)	218
10.3	3.4.	$Ag(C_2H_4)_3[Al(OC(CF_3)_3)_4] (9)$	218
10.3	3.5.	$Ag(C_2H_4)_3[((F_3C)_3CO)_3Al-F-Al(OC(CF_3)_3)_3]$ (10)	219
10.4.	Syı	ntheses of the compounds described in section 5	220
10.4	4.1.	$Ag(C_2H_2)[Al(OC(CH_3)(CF_3)_2)_4]$ (11)	220
10.4	4.2.	$Ag(C_{2}H_{2})_{2}[Al(OC(H)(CF_{3})_{2})_{4}]$ (12)	221

10.4	1.3.	$Ag(C_2H_2)_3[((F_3C)_3CO)_3Al-F-Al(OC(CF_3)_3)_3]$ (13)	221
10.4	1.4.	$Ag(C_2H_2)_2(CH_2Cl_2)[Al(OC(CF_3)_3)_4]$ (14)	222
10.4	l.5.	$Ag(C_2H_2)_3[Al(OC(CF_3)_3)_4]$ (15)	222
10.4	1.6.	$Ag(C_2H_2)_4[Al(OC(CF_3)_3)_4]$ (16)	223
10.5.	Sy	ntheses of the compounds described in section 6	223
10.5	5.1.	$Ag(CO)[Al(OC(CH_3)(CF_3)_2)_4]$ (17)	223
10.5	5.2.	$Ag(CH_2Cl_2)_2[Al(OC(H)(CF_3)_2)_4]$ (18)	224
10.5	5.3.	$Ag(CH_2Cl_2)_3[Al(OC(CF_3)_3)_4]$ (19)	224
10.5	5.4.	$Ag(CH_2Cl_2)[Al(OC(CH_3)(CF_3)_2)_4]$ (20)	224
10.5	5.5.	$Ag(C_4H_8)[Al(OC(CH_3)(CF_3)_2)_4]$ (21)	225
10.6.	Sy	nthesis of Cu(C ₂ H ₄) ₃ [Al(OC(CF ₃) ₃) ₄]	225
10.7.	Sy	ntheses of the compounds described in section 8	226
10.7	7.1.	LiOC(CF ₃) ₃ (23)	226
10.7	10.7.2. AgOC(CF ₃) ₃ (24)		226
10.7	7.3.	$[(Ag(C_2H_4))_3(OC(CF_3)_3)_2][Al(OC(CF_3)_3)_4] (25)$	227
10.7	7.4.	$[(Ag(C_4H_8))_3(OC(CF_3)_3)_2][Al(OC(CF_3)_3)_4] (26)$	228
10.8.	Qu	antum chemical calculations	230
11.	A	NNEX	233
11.1.	Nu	mbering of all compounds	233
11.2.	Ex	perimental anion NMR signals and calculated chemical shifts	234
11.3.	Ex	perimental bands and calculated frequencies of [Al(OC(CF ₃) ₃) ₄] ⁻	235
11.4.	Ex	perimental IR and Raman bands of $[Al(OC(H)(CF_3)_2)_4]^2$	239
11.5.	Ex	perimental IR and Raman bands of [Al(OC(CH ₃)(CF ₃) ₂) ₄] ⁻	240
11.6.	IR	and Raman bands of [(RO) ₃ Al-F-Al(OR) ₃] ⁻ (R = C(CF ₃) ₃)	241

,		
P	-	۰.
L		
٩,		,
	l	t

12.	LITERATURE	285
11.10.	Publications and Poster contributions	283
11.9.	Abbreviations	281
11.8.	Crystal data of 1 to 26	251
11.7.	Computational data of all calculated species	242