
Chapter 1

Introduction

The questions studied in this thesis are based on routing problems at a
container terminal at the Hamburg harbor. Between the harbor’s quay and
a storage area, more than sixty vehicles transport containers with a planned
throughput of nearly two million containers per year. These vehicles are
automatically guided to drive along specified lanes on their own. In order
to transport all containers to their destinations, these vehicles have to be
supplied with appropriate routes along the lanes to ensure that they do not
collide with each other. Herein, time plays an essential role. Ships have to
be loaded and discharged in a short time in order for the containers to be
quickly brought to their destinations.

Such routing problems are a common task in logistics. Typically the
aim is to find paths and to send transportation vehicles along them, such
that given requests are fulfilled as quickly as possible with a limited number
of vehicles. Most routing problems are complex due to a large amount of
transportation requests and a large variety of possible routes in the given
area. Therefore, good routings can hardly be determined manually, but a
good control is a substantial competitive edge. As such, more and more
sophisticated tools are currently under development to support this type
of planning.

The field of combinatorial optimization provides methods to model and
solve routing problems. Such mathematical methods are characterized not
only by their ability to suggest strategies for a routing but also by their
capability to prove the quality of the proposals, which other approaches
normally cannot do. A broadly–applied method to model and solve rou-
ting problems within a combinatorial optimization framework are so–called
network flows. Commonly, lanes are taken as edges and crossings as nodes
of the network. Restrictions such as driving times, lane capacities, and
costs for using a lane are assigned as parameters to edges and nodes of this
routing network.

1

2 Introduction

Every routing problem stemming from an application involves a num-
ber of special requirements based on the conditions of the processes to
be modeled. Some of these restrictions are covered by standard network
flow models, such as lane capacities and directions in which lanes can be
traversed. Standard methods do not include a time dimension, although
it is essential for routing strategies. As a consequence, waiting policies
cannot be handled. Mostly, standard approaches allow fractional flow por-
tions, meaning that path flows cannot be seen as vehicles. Bounds on the
number of paths used cannot be expressed because when formulating flow
edgewise concrete paths are ignored.

In this thesis, we investigate two extensions of the standard model. The
first extension is motivated by the fact that transportation tasks often have
to be fulfilled with a limited number of vehicles. Due to this number, only
a bounded number of paths can be used. Standard network flow algorithms
are not designed to respect such a bound, meaning that flows may travel
along a huge number of paths. We take this bound into account and study
so–called k–splittable flows using no more than k paths. We investigate a
problem related to the well–known maximum s, t–flow problem by looking
for maximum k–splittable s, t–flows where k is a given integer or depends
on graph parameters.

In the second part, we involve a time dimension that cannot be handled
efficiently by standard methods. We study so–called flows over time that
allow the modeling of movements of flow through a network. We investigate
such flows over time in networks featuring a special structure, namely
grids that often occur in storage areas. Regarding these grid flows, we
consider further aspects such as waiting on edges and time windows that
close edges for certain time intervals. Such aspects motivated by practical
requirements lead to interesting research questions.

For both k–splittable flows and flows over time in grids, we concentrate
on analyzing the complexity and approximability of such problems. We
identify polynomially solvable and NP–hard cases for a variety of problem
variants. Non–approximability results as well as approximation algorithms
are shown.

Both flow problems are related to the disjoint paths problem: For a
given network with sources and sinks, the question is, how many source–
sink pairs can be connected by pairwise edge–disjoint paths. Finding a
maximum integral multicommodity k–splittable flow with unit edge ca-
pacities and a single path for each commodity corresponds to the same

3

question. Maximum flows over time in graphs with edge capacities 1 and
integral flow portions reflect the disjoint paths problem in a dynamic envi-
ronment, such that we call it the disjoint paths over time problem. As far
as we know, disjoint paths over time have not been studied at all up until
now.

Outline of this thesis

The main part of this thesis consists of three chapters.

In Chapter 2, we investigate k–splittable flows. This chapter is based
on joint work with Ronald Koch and Martin Skutella of the University of
Dortmund. Parts of it are published in [30], [31], and [32]. It deals with the
maximum k–splittable s, t–flow problem (MkSF), expanding on the well-
known maximum s, t–flow problem with the requirement that the solution
can be split into no more than k path flows. In this chapter, the value k is
either a constant integer or is dependant on graph parameters. For both
instances we study the complexity and approximability of the problem
MkSF. An overview of polynomially solvable cases and NP–hard variants
is developed and bounds for approximation guarantees are proven. For
solving MkSF, a new approach is introduced by decomposing the problem
into two subproblems, a packing and a routing step, which can be solved
consecutively. We succeed in the unusual way of first determining path
flow values and then looking for corresponding routes. With this strategy,
we are able to calculate solutions for a special graph class, namely graphs
of bounded treewidth: In the case of a constant number k, the problem is
solved to optimality, whereas if k is part of the input, a polynomial time
approximation scheme (PTAS) is derived.

We omit restrictions on the number of paths used and include a time
dimension beginning with Chapter 3. Flows over time are considered in
grid graphs. In Chapter 3, the single commodity case is investigated. We
are interested in finding quickest flows , which means to determine the
minimum possible time horizons needed to satisfy given demands. We
consider a variety of specific problem configurations that differ by having
uniform or edge–specific transit times. Secondly, waiting on edges can
or cannot be allowed. Furthermore, edges can or cannot be closed for
certain time intervals. In the case where edges are not temporarily closed,
we provide polynomial solution methods. When in contrast to this, time
windows close edges for certain periods of time, then some configurations

4 Introduction

are shown to be NP–hard. In some cases, the complexity remains open.
Moreover, we prove certain non-approximability results.

In Chapter 4, the previous chapter is extended to more than one com-
modity. Again, the above–mentioned problem configurations are investi-
gated. We show how to replace time windows with additional commodities.
Thus, in contrast to the previous chapter, time windows are not the critical
factor for the problem’s complexity. All considered problem variants are
proven to be NP–hard by a reduction from 3-Coloring. A second, much
easier reduction from Partition, which applies only when non–uniform
transit times are allowed, refines the results for some variants by already
showing NP–hardness for very small constant numbers of commodities.
We discuss the influence of waiting and of integrality requirements. Two
approximation algorithms are introduced, one for all variants without time
windows and the other for cases when additional transit times are uniform
along all grid edges.

Preliminaries

We assume the reader is familiar with basic concepts of complexity theory.
A good survey is provided by Garey and Johnson [19]. Some terms used in
this thesis are briefly summarized in the following. Throughout this work
we assume that P 6= NP .

A problem is said to be strongly NP -hard if it is still NP -hard even
when the absolute values of all numbers in the input are bounded by some
polynomial in the length of the input. Thus, NP -hard problems without
numbers are always strongly NP -hard. An algorithm is called pseudo–
polynomial if it is polynomial in its number of input values and in its
maximum input value. If there is a pseudo–polynomial algorithm, then a
problem is not strongly NP -hard. A problem that is NP -hard but not in
the strong sense is called weakly NP -hard .

In the following chapters, we refer to some well–known NP–complete
problems. To simplify the notation and to avoid redundancies, we outline
them here and use the same notation throughout this work. More details
can be found in Garey and Johnson’s work [19].

• SubsetSum: Given q positive integers u1, ..., uq and a number M , is
there a subset S ⊆ {1, ..., q}, such that

∑

i∈S ui = M?

5

• SAT: A set of variables {x1, ..., xr} and a set of clauses {C1, ..., Cq}
over the set of variables is given. Is there a truth assignment on the
variable set satisfying all clauses?

• 3SAT: A set of variables {x1, ..., xr} and a set of clauses {C1, ..., Cq}
over the set of variables is given, such that each clause contains three
variables. Is there a truth assignment for the variable set satisfying
all clauses? This problem is NP–complete in the strong sense.

• Partition: Given positive integers a1, ..., ar, is there a partition of
these integers into two groups with the same sum of elements?

• 3-Coloring: Is it possible to color the nodes of a given graph with
three colors, such that adjacent nodes have different colors? The
problem is NP–complete in the strong sense.

Some NP–hard problems can be handled by so–called approximation
algorithms . These are polynomial algorithms that provide a feasible solu-
tion to a problem with a certain performance guarantee. Such guarantees
are given as relative or absolute values referring to an optimal value OPT .
An algorithm A is said to have a relative guarantee of α if, for all pro-
blem instances I, it gives a solution A(I) with A(I) ≥ α OPT (I) for a
maximization problem and A(I) ≤ α OPT (I) for a minimization problem.
Obviously, α ≤ 1 in the case of a maximization problem and α ≥ 1 in
a minimization problem. A has an absolute guarantee of β if its solu-
tions fulfill A(I) ≥ OPT (I)+β in a maximization problem, and otherwise
A(I) ≤ OPT (I) + β. In a maximization problem β ≤ 0 is required and in
a minimization problem β ≥ 0.

As a reference for the reader, a list of symbols is given at the end of
this thesis.

Chapter 2

Static k-splittable flows

2.1 Introduction

Many planning tasks in transport, telecommunication, production, or traf-
fic logistics can be modeled as network flow problems. In classic flow the-
ory, flow is sent through a network from sources to sinks respecting edge
capacities. It does not matter how many paths are used, such that small
portions of flow may be sent along a large number of paths. However, for
many practical purposes, it is not seen as favorable to use a huge number of
paths. In logistic networks, for example, the number of paths that can be
used simultaneously is naturally limited by the number of available vehi-
cles. In communication networks, data are often split into several packages
that are sent along different paths. Each of them has to carry a great deal
of information on source, target, relations to other packages and so on,
such that a high number of packages is not desired. As in these examples,
various applications ask for a flow that does not involve a large number
of paths. Such a restriction is not taken into account by classical flow
algorithms and cannot be easily incorporated. An edge–wise flow formu-
lation does not relate to a unique path decomposition and is not suitable
for limiting path numbers. Flow considered in a path formulation cannot
be dealt with efficiently due to an exponential number of paths. For such
purposes, so–called k–splittable flows have been introduced with an upper
bound on the number of paths as an explicit additional requirement. In
this chapter, we look for such flows having a maximum value. We prove the
NP–hardness of the maximum k–splittable s, t–flow problem for different
specifications of k and solve some polynomial variants. A framework is
also developped to solve problem variants to optimality or near–optimality
on graphs of bounded treewidth whereas they are hard on general graphs.

The further introductory part of the chapter contains some notation
on static flows and k-splittability, preliminaries on bounded treewidth, an
overview on the related literature, and an outline of the main part.

7

8 Static k-splittable flows

Static flows

Let D = (V, A) be a directed graph with a node set V and an arc set A,
n := |V | and m := |A|. Arcs have capacities u : A → R≥0. A source and a
sink node s, t ∈ V are given. An s, t–flow in D is a function on the arc set
f : A → R≥0 fulfilling flow conservation at each node except for s and t:

∑

a=(v,u)∈A

f(a) −
∑

a=(u,v)∈A

f(a) = 0 ∀u ∈ V \ {s, t}.

Such a flow is called feasible if capacity constraints are additionally met:

f(a) ≤ u(a) ∀a ∈ A.

The value of a flow , |f |, equates to the amount of flow leaving the
source minus the amount of flow that reaches the source:

|f | :=
∑

a=(s,u)∈A

f(a) −
∑

a=(u,s)∈A

f(a).

If we have more than one commodity, a set of d pairs of sources and
sinks (si, ti) ∈ V × V, i ∈ {1, ..., d}, is given. Each node that belongs to the
set of sources S or the set of sinks T is called a terminal . A function on the
arc set f : A → R≥0 respecting arc capacities, is a feasible multicommodity
flow if f is the sum of feasible si, ti–flows fi, i = 1, ..., d.

We work with flows in undirected graphs in this thesis. Let G = (V, E)
be an undirected graph with a node set V and a set of edges E, and again
n := |V | and m := |E|. A function f : E → R≥0 is a feasible s, t-flow
in G if there is an edge orientation, such that f is a feasible s, t-flow in
the resulting directed graph. Moreover, f is a feasible multicommodity
flow if it can be divided into feasible si, ti-flows. Edge orientations can
be choosen for each commodity independently. Notice that for respecting
capacity constraints, all flow along an edge is taken into account no matter
its direction.

In the following, we will not distinguish between flows and feasible flows.
Flows considered in this thesis have to fulfill flow conservation and capacity
constraints in each case. Hence, feasibility is not mentioned explicitly.

2.1 Introduction 9

Static s, t-flows have been addressed many times in the literature. Ford
and Fulkerson [18] give an overview on the initial results. For more details
see, e.g., Ahuja, Magnanti, and Orlin’s work [1].

k-splittable flows

The concept of k–splittable flows has been introduced by Baier, Köhler,
and Skutella [5]. Let G = (V, E) be a connected undirected or directed
graph. Additionally, a number k ∈ N is given. A flow is called k–splittable
if it can be decomposed using at most k paths which are not required to be
different or even disjoint. The maximum k–splittable flow problem(MkSF)
asks for a k–splittable s, t–flow of maximum value similar to the well-
known maximum s, t–flow problem. A standard result states that any
s, t–flow can be decomposed into flow along, at most, m paths and cycles.
This decomposition can be done in polynomial time. Thus, MkSF is an
interesting problem for values of k that are smaller than m.

Of course, k–splittability can also be considered more generally in a
multicommodity context. In this case, a bound on the number of all paths
or an individual bound for each commodity is given. An unsplittable flow is
a multicommodity flow with a single path per commodity. If all paths are
required to carry the same amount of flow, then the flow is called uniform.
If all edge capacities and demands are 1, then asking for a maximum inte-
gral k–splittable flow is equivalent to the problem of finding a maximum
number of disjoint paths.

Kleinberg [28] investigates unsplittable flows. He studies their com-
plexity and introduces approximation algorithms for different unsplittable
flow problems, e.g., for minimizing the congestion along edges or equi-
valently maximizing the throughput, for the problem of minimizing the
number of graph copies to satisfy all demands and for the problem of ma-
ximizing the total demand which can be routed simultaneously.

Baier, Köhler, and Skutella [5] investigate k–splittable flows with one or
more commodities. They prove the NP–hardness of the MkSF problem in
directed graphs for all constant values of k ≥ 2. Considering MkSF, they
provide a maximum flow – minimum cut result and an optimal solution
algorithm working in O(k m log n). For the general MkSF problem with
different path flow values, a 1/2–approximation is derived based on results
for the uniform case.

