

Remo Stohler (Autor) Asymmetric Metal-Catalyzed [3+2] Cycloadditions of Azomethine Ylides

https://cuvillier.de/de/shop/publications/1883

Copyright:

Cuvillier Verlag, Inhaberin Annette Jentzsch-Cuvillier, Nonnenstieg 8, 37075 Göttingen, Germany Telefon: +49 (0)551 54724-0, E-Mail: info@cuvillier.de, Website: https://cuvillier.de

Contents

1	Intro	oduction	3
1.1		Racemic Versus Enantiopure Drugs	3
1.2		Different Pharmacokinetic Properties of Enantiomers	3
1.3		Different Pharmacodynamic Properties of Enantiomers	6
2	Biolo	ogical Activity of Pyrrolidines and Resulting Objectives	11
2.1		Biological Active Pyrrolidines	11
2.2		Objectives	13
3	[3+2] Cycloadditions	17
3.1		General Aspects	17
3.2		Reactivity and Regioselectivity of [3+2] Cycloadditions	19
3.3		Mechanism of [3+2] Cycloadditions	25
3	.3.1	Concerted versus Stepwise Mechanism	25
3	.3.2	Mechanistic Aspects of [3+2] Cycloadditions of Metal-Stabilized Azomethine Ylides	26
3.4		Diastereoselectivity of [3+2] Cycloadditions	29
3.5		Enantioselectivity of [3+2] Cycloadditions	30
4	Meta	als and Ligands Employed for [3+2] Cycloadditions of Azomethine Ylides	33
4.1		Metals Used to Promote [3+2] Cycloaddition Reactions	33
4.2		Chiral Ligands Used for Cu(I)-Catalyzed [3+2] Cycloadditions	33
4.3		Chiral Ligands Used for Cu(II)-Catalyzed [3+2] Cycloadditions	35
4.4		Chiral Ligands Used for Zn(II)-Catalyzed [3+2] Cycloadditions	35
4.5		Chiral Ligands Used for Ag(I)-Catalyzed [3+2] Cycloadditions	36
5	Initi	al Metal and Ligand Screening for the [3+2] Cycloaddition of Azomethine Ylides	41
5.1		Metal Screening	41
5.2		Ligand Screening for the Ag(I)-Catalyzed [3+2] Cycloaddition	41
5	.2.1	Optimization of the Reaction Conditions	42
5	.2.2	Application of Different P,N-Ligands to the Ag(I)-Catalyzed [3+2] Cycloaddition	45
5	.2.3	Application of Different P,P-Ligands to the Ag(I)-Catalyzed [3+2] Cycloaddition	48
5	.2.4	Application of an N,N-Ligand to the Ag(I)-Catalyzed [3+2] Cycloaddition	49
5	.2.5	Application of Different Monodentate P-Ligands to the Ag(I)-Catalyzed [3+2] Cycloaddition	50
5	.2.6	Conclusion	51
5.3		Ligand Screening for the Cu(I)-Catalyzed [3+2] Cycloaddition	52
	.3.1	Application of Different <i>P</i> , <i>N</i> -Ligands to the Cu(I)-Catalyzed [3+2] Cycloaddition	52
	.3.2	Application of Different <i>P</i> , <i>P</i> -Ligands to the Cu(I)-Catalyzed [3+2] Cycloaddition	54
5	.3.3	Application of an <i>N</i> , <i>N</i> -Ligand to the Cu(I)-Catalyzed [3+2] Cycloaddition	55

5.	3.4 Conclusion	55
5.4	Au(I)-Catalyzed [3+2] Cycloaddition	56
5.	4.1 Application of Different PHOX-Ligands to the Au(I)-Catalyzed [3+2] Cycloaddition	57
5.	4.2 Conclusion	58
5.5	Final Conclusion	59
6	Phosphinooxazolines	63
6.1	General Aspects	63
6.2	Synthesis of C5-Disubstituted Phosphinooxazoline Ligands	63
6.3	Synthesis of Phosphinooxazoline Ligands Bearing Two Chirality Centers at the Oxazo	oline Unit
		69
7	Optimization of the Ligand Structure for Ag(I)-Catalyzed [3+2] Cyclo-additions	73
7.1	Introduction	73
7.2	Influence of Different Substituents at the Phosphorous Atom of the PHOX Ligand	74
7.3	Influence of Different Substituents at the Phenyl Backbone of the PHOX Ligand	76
7.4	Influence of Different Substituents at the C4 Position of the Oxazoline Ring	77
7.5	Influence of Different Substituents at the C5 Position of the Oxazoline Ring	78
	5.1 Influence of an Additional Chirality Center at the C5 Position of the PHOX Ligand	80
7.6	Conclusion	81
8	Scope of the Asymmetric Ag(I)-Catalyzed Intermolecular [3+2] Cycloaddition	85
8.1	Application of Differently Substituted Azomethine Ylides	85
8.2	Application of Differently Substituted Dipolarophiles	88
8.3	Conclusion	91
9	Asymmetric Ag(I)-Catalyzed Intramolecular [3+2] Cycloadditions of Azomethine Ylides	95
9.1	Introduction	95
9.2	Substrate Synthesis	98
9.3	Influence of Solvent and Reaction Temperature	99
9.4	Ligand Screening for the Ag(I)-Catalyzed Intramolecular [3+2] Cycloaddition	100
9.5	Absolute Configuration of a Tricyclic Product	101
9.6	Scope of the Ag(I)-Catalyzed Intramolecular [3+2] Cycloaddition	102
9.7	Aliphatic Substrates for the Intramolecular [3+2] Cycloaddition	106
9.8	Conclusion	107
10	Structural Elucidation of a Ag(I)-PHOX Complex	111
11	Ir(I)-Complexes of C5-Substituted PHOX Ligands as Catalysts for the Asym-metric Hydro	genation
	of Olefins and Imines	115
11.1	Introduction	115

11.2		Application of Ir(I)-Complexes Derived from C5-Substituted PHOX Ligands to Asymmetric Hydrogenation 115			
11.3		Conclusion	123		
12	Asyn	metric Metal-Catalyzed [3+2] Cycloadditions of Azomethine Ylides	127		
13	Expe	rimental Part	131		
13.1		Analytical Methods	131		
13.2		Working Techniques	132		
13.3		Synthesis of PHOX Ligands	133		
13	.3.1	Synthesis of C5-Disubstituted PHOX Ligands	133		
13	.3.2	Synthesis of PHOX Ligands Bearing Two Chirality Centers at the Oxazoline Unit	164		
13.4		[3+2] Cycloadditions	173		
13	.4.1	Synthesis of Subatrates for [3+2] Cycloadditions	173		
13	.4.2	Asymmetric Ag(I)-Catalyzed [3+2] Cycloadditions	190		
13.5		Asymmetric Hydrogenation of Olefines and Imines	209		
13	.5.1	Preparation of Ir(I)-PHOX Complexes	209		
13	.5.2	Asymmetric Hydrogenations	225		
14 Appe		endix	231		
14.1		X-Ray Crystal Structures	231		
15	15 Bibliography				