
Introduction

In combinatorial optimization one wants to find the best solution among many
possible choices. The set of candidates is usually given implicitly by the input
data and often has exponential size in comparison to the input. The aim is to
construct an efficient algorithm which computes the best solution or a solution
of provably good quality. A very important topic in combinatorial optimization
is scheduling. It treats the assignment of limited resources to activities. In the
actual applications, the resources can be very diverse, e. g., machines, money,
gasoline, teachers, cars, watchmen, etc. Examples for the many imaginable ac-
tivities are producing industrial goods, guarding a building, delivering parcels,
executing a computer program, working on a project, or the classes of a univer-
sity. The goal is to assign the resources to the activities in order to optimize
some performance measure. Such a measure could be the time when the last
activity finishes or the total delay of all activities.

The problems studied in this thesis can be understood as machine scheduling
problems. In machine scheduling, one is usually given a set of jobs with certain
processing times which need to be assigned to some given machines. One has to
compute a schedule such that each job is assigned and each machine processes at
most one job at a time. Often, additional constraints are present. For instance,
jobs could have a deadline by which they have to be finished, some jobs might
not be able to start before some others have finished (precedence constraints),
or some jobs might not be available before a certain given time (release dates).

A broad range of applications can be understood as machine scheduling
problems. A simple example is the manufacturing process of industrial goods
in a factory. The jobs model the manufacturing steps which need to be done
on the different processing units. The latter are modeled by the machines.
However, also the organization of a garden party fits into the machine scheduling
framework. The preparation steps (putting on the barbecue, prepare salads,
invite friends, etc.) are modeled by jobs whereas the organizers are modeled
by the machines. Finally, finding a timetable for the classes of a university
and their assignment to lecture theaters can also be formalized as a machine
scheduling problem.

For evaluating a computed schedule we need a suitable quality measure.
This measure can vary significantly depending on the actual application. For
example, two common objective functions in machine scheduling are the sum
of weighted completion times and the makespan. For applications like the pro-

1



INTRODUCTION

duction of cars in a factory it is desirable to finish as many units as early as
possible. To this end, a good objective function is the sum of the completion
times of all jobs. If some jobs are more important than others one can ad-
ditionally give each job a weight which reflects its significance. The resulting
objective function is then the sum of the weighted completion times. When
scheduling the work of a project or for the mentioned garden party one might
rather want that the overall schedule finishes as early as possible. The time
when the last job finishes is defined as the makespan of a schedule which is a
good objective function in this case. In other settings such as time-tabling there
might be no objective function necessary and one only wants to compute some
feasible schedule. However, in such settings it is likely that there are also some
not strictly necessary but still desirable “soft” constraints which can be modeled
by a suitable objective function.

One very fundamental scheduling problem is the packet routing problem
(even though in the literature it is usually referred to as a routing problem,
see [5, 65, 92], it can also be understood as a scheduling problem). In computer
networks like the internet huge amounts of data need to be transported. In par-
ticular, due to applications like video-streaming and Voice over IP (VoIP) the
internet traffic has grown significantly in the last few years. In computer net-
works, the transported data is split into packets. Those form the atoms of the
network communication. Each packet needs to be transported from its origin to
its destination. Since the bandwidth of the communication links is limited, the
network might need to delay packets. This results in a scheduling problem. The
packets form jobs which need to be “processed” by the links on its path. The
limited bandwidth is captured by the fact that each link/machine can process
only one packet (or maybe some constant number of packets) at a time.

In some scheduling applications jobs are created repeatedly. For instance,
consider an on-board computer of a modern airplane. In a repeated fashion, the
computer executes jobs like checking the altitude, operating the auto-pilot, etc.
For flight safety it is crucial that each operation finishes before its deadline.
Already a small delay in a critical operation might endanger the aircraft and its
passengers. Therefore, one needs a (mathematical) proof that a system operates
according to its specifications at all times. The area of real-time scheduling pro-
vides the mathematical foundation for such proofs. The operations are modeled
by tasks which continuously generate new jobs. Since the schedule is assumed to
run infinitely long one cannot compute it explicitly. Instead, one is interested in
scheduling policies which decide at every point in time which jobs are executed
on the machines. Given such a scheduling policy one needs to prove that every
job which is ever created meets its deadline.

Almost all problems which we consider in this thesis are NP -hard. Since it is
widely believed that P �= NP , there is not much hope for efficient (polynomial
time) algorithms which solve our problems exactly. Therefore, we relax the aim
of always finding an optimal solution and search for approximation algorithms
instead. For this thesis, an α-approximation algorithm is a polynomial time
algorithm which computes solutions whose objective values differ by at most a
factor of α from the respective optimum. We refer to α as the approximation

2

factor or performance ratio of an algorithm.



INTRODUCTION

At first glance, approximation algorithms might not seem to be relevant for
practical applications. For instance, a solution whose value differs by a factor of
two from the optimum is by far not satisfying if it has an impact on a budget of
thousands of euros. However, the performance ratio of an algorithm is always
based on a worst-case analysis. Hence, there could be (and usually there are)
many instance of the respective problem where the algorithm performs much
better than in the worst-case scenario. Also, for exact methods like IP-solvers it
is often useful to have primal solutions of good quality which help pruning the
branch-and-bound tree. Apart from being heuristics that one could use directly,
approximation algorithms usually yield important structural properties of the
problem. These properties can be exploited in approaches to solve the problem
exactly (with more computational effort). A good example is our work on the
periodic maintenance problem which we present in Chapter 6. We designed
approximation algorithms for the several settings of the problem, especially
for the practical relevant harmonic case with pairwise dividing period lengths.
The gained structural insights then allowed us to develop an IP-formulation
for the problem which was able to solve all instances of our industrial partner
optimally [28]. Straightforward approaches without the additional insights failed
to solve instances of real-world size.

Outline of the Thesis

In Part I of this thesis we study the packet routing problem. As described
above, it is a very fundamental question in computer networks. However, it
is by far not fully understood theoretically. The best known approximation
algorithm produces a schedule whose length is bounded by O(C + D) [66].
The congestion C and the dilation D form the two natural lower bounds on
the length of each schedule. One can argue that with the constructive proof
for the Lovász Local Lemma (LLL) [79] the proof by Scheideler [92] yields an
algorithm computing schedules which finish after at most 39(C+D) steps. The
above results almost completely rely on the LLL which – due to its generality –
cannot make use of the entire structure of the problem. In this work, we make a
step towards a better theoretical understanding of the important properties of
the problem. We present approximation algorithms, bounds on the makespan of
optimal schedules, and complexity results. In particular, we show how structural
insights help improving the above LLL-based results.

Chapter 1: The general packet routing problem is very complex. However,
when the underlying graph topology is well-structured – like a tree – one can
design better and simpler algorithms. In this chapter, we study the packet
routing problem on instances where the given graph is a tree. The gained
insights will be very useful later in Chapter 2 where we study general graphs.
We show that the straightforward farthest-destination-first (FDF) algorithm has
an arbitrarily large approximation factor, even on directed trees. Hence, more
sophisticated algorithmic methods are needed. For undirected trees we present

3



INTRODUCTION

a 2-approximation algorithm. For directed trees we derive structural properties
which allow us to design an algorithm computing direct schedules (which delay
packets only in their respective origins) which finish within C + D − 1 steps.
Hence, this algorithm is also a 2-approximation algorithm, but it yields a much
better performance guarantee if C � D or D � C. Finally, we derive a general
condition for the existence of a direct schedule with a certain makespan, even
for general directed graphs. We published the results of this chapter in [84].

Chapter 2: We broaden our scope to general graphs. It is known that there
is always a schedule which finishes within 39(C+D) steps [92]. No improvement
on this bound has been made in more than 10 years, even though it is a very nat-
ural and important question. We improve and generalize the previous results
for the problem. First, we improve the above bound to 23.4(C + D). More-
over, we generalize the problem by allowing arbitrary bandwidths and arbitrary
transit times for the edges. If every link in the network has at least a certain
bandwidth and/or transit time we prove even better bounds. For example, if
every link has a transit time of at least 63 we obtain a bound of 4.32(C + D)
for the makespan of the optimal schedule. We derive these results with a novel
framework. Once one has established a good bound for the makespan of optimal
schedules for instances with small dilation (i. e., each packet travels only along
a small number of edges) our framework implies a bound for all instances. For
deriving a bound for instances with small dilation we use the insights gained
in Chapter 1. Moreover, our framework has the potential to give even better
bounds using further insights for such instances. See [88] for our conference pa-
per which contains these results. Due to the mentioned recent result of Moser
and Tardos [79] we even obtain an algorithm which computes a schedules with
the above bounds.

Chapter 3: After having studied algorithms for the packet routing prob-
lem, in this chapter we analyze its complexity. It is known that the problem is
NP -hard (implicitly in [25]). We show that it is even NP -hard to approximate
the problem with a factor better than 6/5. In particular, this rules out the exis-
tence of a PTAS, assuming that P �= NP . Even more, we prove the latter also
for the special case that the underlying graph is a directed tree. For this very
restricted graph class we show that the existence of an approximation algorithm
with a factor better than 8/7 implies P = NP . This surprising result underlines
the difficulty of the packet routing problem since most NP -hard optimization
problems (e. g., Coloring, Independent Set, etc.) become polynomial time
solvable if one restricts the input graphs to trees. The results of this chapter
were published in [84].

Chapter 4: So far we studied the packet routing problem only in the static
setting where a finite set of packets needs to be transported to their respective
destinations. However, in applications like live video-streams or Voice Over IP
(VoIP) usually arbitrarily many packets are created repeatedly. This requires a
different model. Therefore, in this chapter we study the periodic packet routing
problem. The input consists of tasks (rather than single packets) which con-
tinuously generate new packets. We assume an infinite time horizon. Hence,
we cannot compute the actual schedule explicitly. Instead, we need to design

4



INTRODUCTION

scheduling policies which define the prioritization of the packets at runtime. We
study two paradigms for these policies, template schedules and priority sched-
ules. Priority schedules are an adaption of rate-monotonic schedules as they
are known in classical real-time scheduling. Template schedules are a class of
schedules which are especially designed for periodic packet routing. We give
a comprehensive characterization of these paradigms. We present algorithms
which compute schedules of the respective types and prove (almost) matching
lower bounds for the potential of the two paradigms. We refer to [86] for our
paper with the results of this chapter.

In Part II of this thesis, we study three other scheduling problems, the flow
scheduling problem, the periodic maintenance problem, and finally the problem
of scheduling jobs on unrelated machines.

Chapter 5: Dynamic flows and scheduling are two important areas of
combinatorial optimization which in practice often arise in a combined manner.
However, in theory both problems are mostly treated separately. Better prac-
tical solutions need thorough theoretical knowledge. Therefore, in this chapter
we make a step towards a better understanding of the interaction of the two
areas by studying the flow scheduling problem. In that problem, we want to
transport items (jobs) through a network by a dynamic flow from a source to
a sink. The objective is to minimize the sum of weighted arrival (completion)
times at the sink. We first establish the connection between the routing and the
scheduling aspect of this problem. Then we show that the scheduling part of the
problem reduces to the problem of scheduling jobs on a single machine whose
speed might increase over time (the objective is still to minimize the sum of
weighted completion times). We treat this interesting problem in its own right.
In contrast to the case where the speed of the machine stays constant, the nat-
ural Smith’s Rule algorithm is not always optimal in this setting. However,
we show that it is exactly a

(
(
√
3 + 1)/2

)
-approximation algorithm. Usually

in approximation algorithms, one establishes a lower bound against which one
compares the value of the computed solution. Here we pursue a different ap-
proach. We constructively characterize properties of worst-case instances. We
do this so precisely, that finally computing the worst-case approximation ratio
of Smith’s Rule on these instances reduces to basic calculus. This procedure
gives us the exact approximation ratio of the algorithm and a family of tight
examples. In addition, we generalize the PTAS for the unit speed case with
release dates [3] to our problem with release dates. Studying the online setting,
we show that here Smith’s Rule is still a 2-approximation algorithm. We round
up the picture by showing certain other helpful properties of the problem which
yield some polynomial time solvable special cases. The results of this chapter
have been published in [102].

Chapter 6: As part of our collaboration with our industrial partner, a
major avionics company, we study the periodic maintenance problem (PMP).
As described above, in a modern aircraft the flight control is to a great ex-
tent automatically done by the on-board computer. Therefore, it is crucial that
the computer works according to its specifications at all times. The computer
programs are modeled by tasks which periodically need processing time on the

5



INTRODUCTION

processors that they are assigned to. The scheduling rule is very conservative:
Once a task has released a new job, this job has to be processed immediately
without any delay or preemption. The only degrees of freedom are the assign-
ment of the tasks to processors and the initial time-offsets for the tasks. Even
though real-time scheduling is a very active field of research, this particular
problem has not been studied much. It arises at our industrial partner and is
likely to appear in similar settings where very conservative scheduling rules are
necessary. So far, it lacked the theoretical understanding of the properties which
are needed for real-world solutions. In this chapter, we study the problem from a
theoretical perspective and give a comprehensive characterization of its approx-
imation landscape in the various settings. In particular, we study the practical
relevant case of harmonic periods where the period lengths of the tasks divide
each other pairwise. This setting can be understood as a generalization of the
well-known Bin-Packing problem. Therefore, studying the problem is not only
interesting from a practical point of view but also yields interesting theoretical
insights. It turns out that important algorithmic properties of Bin-Packing do
not generalize to the PMP. Among other results, using involved analytic tools
we present a 2-approximation algorithm for the harmonic case and a tightly
matching non-approximability result. As mentioned above, the gained insights
for the harmonic case helped us to design a sophisticated IP-formulation for the
problem which was very successful in practice [28]. See [27] for our publication
on the theoretical aspects of the problem presented in this chapter.

Chapter 7: One of the most prominent open problems in scheduling is to
determine the best possible approximation factor for scheduling jobs on unre-
lated machines to minimize the makespan. In contrast, for parallel and related
machines approximation schemes and matching NP -hardness results have been
known for a long time [52, 53]. The best possible approximation factor for
unrelated machines is still not clear. Since they capture a very general set-
ting, settling this question is a very important problem. In a seminal work,
Lenstra et al. [69] developed an LP-based 2-approximation algorithm for the
problem. On the other hand, they proved that the problem is NP -hard to ap-
proximate with a factor of 3/2 − ε for any ε > 0. This gap between 2 and 3/2
has not been diminished in more than 20 years1 even though the problem is
considered to be very important, see e. g. [95]. One natural way to approach
the problem is to strengthen the linear program by adding suitable inequali-
ties. A linear program which already implicitly contains a huge class of such
inequalities is the configuration-LP. Recently, Svennson [104] showed that the
configuration-LP has an integrality gap of 33/17 < 2 for the restricted assign-
ment case of the problem. However, we show that for the general case this is
not true. We prove that in general the configuration-LP has an integrality gap
of 2. Even more, we show that this is still true if we require that each job can
be assigned to at most two machines (unrelated graph balancing). This is an
indicator that the core difficulty of the problem lies in the unrelated graph bal-

1The only improvement is a slightly better rounding procedure for the LP by Lenstra et al.
that yields a 2− 1/m approximation algorithm [96].

6



INTRODUCTION

ancing case rather than in the restricted assignment case. Then we study the
closely related MaxMin-allocation problem where one wants to maximize the
minimum machine load (rather than minimizing the maximum machine load
as before). This objective can be understood as establishing a fairness condi-
tion for some given agents/machines. For that problem, it is known that in
the unrelated graph balancing case the configuration-LP has an integrality gap
of 2. However, solving the configuration-LP is very difficult and results only
in a computationally very costly (2 + ε)-approximation algorithm. In contrast,
we give a purely combinatorial 2-approximation algorithm with a running time
of O(n2). Our approximation factor is best possible, unless P = NP .

Most results of this thesis have already been published in conference pro-
ceedings [27, 84, 86, 88, 102, 106]. Moreover, as part of our research on the
packet routing problem we published three further conference papers [60, 85, 87].
However, those results are beyond the scope of this thesis. Likewise, the com-
putational aspects of the periodic maintenance problem were published in [28]
but are not covered here.

Throughout this thesis, we assume knowledge of basic concepts of combina-
torial optimization such as graphs, algorithms, NP -completeness, etc. For an in-
troduction see e. g. [61]. Most algorithms presented in this thesis are approxima-
tion algorithm. For introductions to approximation algorithms see [51, 105, 109].

7


