1. Einleitung

1.1 Carotinoide und Carotinoidbutenolide

Carotinoide erregten und erregen immer noch das Interesse von organischen Chemikern, Biochemikern und Medizinern.^[1,2,3] Grund hierfür ist die nahezu unglaubliche Vielfalt ihrer funktionellen Eigenschaften. Anwendung finden sie heute als Nahrungsergänzungsmittel in der Tierhaltung (Fisch-, Geflügelzucht). Sie sorgen dort u. a. für rosafarbene Lachse und intensivgelbe Eidotter.^[4] Aufgrund der intensiven Färbung wird der Mohrrübenfarbstoff und Namensgeber dieser Naturstoffklasse, das β -Carotin (1), auch als Lebensmittelfarbstoff für Käse, Speiseeis, Magarine etc. verwendet.

Schema 1: β-Carotin (1) (Numerierung erfolgte gemäß Carotinoid-Nomenklatur)

 β -Carotin (1) hat mittlerweile auch in der Gentechnik Einzug gehalten. So gelang es den Arbeitsgruppen um BEYER (Freiburg) und POTRYKUS (Zürich) 1999, Reis gentechnisch so zu modifizieren, daß er β -Carotin (1) enthält. Das Ziel des (nunmehr) vollkommen gemeinnützig getragenen Projekts ist die Bekämpfung des Vitamin A-Mangels in der Dritten Welt.^[5]

In der Natur sind Carotinoide oftmals Vorläufer sekundärer Metaboliten (Vitamin A, Geruchsstoffe). Sie besitzen antioxidative Eigenschaften und dadurch bedingt auch Antitumor-Wirkung.^[6] In Pflanzen und Algen sind Carotinoide maßgeblich an der Photosynthese beteiligt;^[7] so dienen einige Vertreter dieser Naturstoffklasse, z.B. das im folgenden noch gezeigte Peridinin (**9**), in Algen als Antennenmoleküle in Licht-Sammel-Komplexen.

Innerhalb der großen Naturstoffklasse der Carotinoide – es sind über 700 Vertreter bekannt – stellen die bisher 17 natürlich vorkommenden Carotinoidbutenolide nur eine kleine Untergruppe dar. Ihr charakteristisches Strukturelement besteht in einem α -substituierten γ -Alkyliden-Butenolidring **2**, der in die Polyenkette integriert ist (Schema 2).

Schema 2: Struktur eines α-substituierten γ-Alkyliden-Butenolidrings

In der Natur findet man Carotinoidbutenolide vor allem in einzelligen Algen der Klasse *Dinophyceae* (Dinoflagellaten),^[8] die den Hauptteil des marinen Planktons bilden. Sie wurden aber auch aus Muscheln oder Seeanemonen isoliert. Da Tiere im allgemeinen – und die zuletzt genannten Arten wohl auch – nicht in der Lage sind, Carotinoide *de novo* zu synthetisieren, stammen letztere wohl von Dinoflagellaten, die entweder als Nahrung dienen oder in Symbiose (z. B. *Zooxanthellae*) mit den Tieren leben.

Die 17 natürlichen Carotinoidbutenolide können aufgrund der Strukturunterschiede im $C^2/C^7/C^8$ -Appendix ihrer Heptaenkette in drei Untergruppen eingeteilt werden: Pyrrhoxanthin-artige (Schema 3), Peridinin-artige (Schema 4) und Uriolid-artige Carotinoidbutenolide (Schema 5). Bei den Pyrrhoxanthin-artigen und den Peridinin-artigen Carotinoidbutenoliden handelt es sich durchweg um Trinorcarotinoide. Dies sind Verbindungen, die im Gegensatz zu dem bei Carotinoiden üblichen C₄₀-Skelett lediglich über 37 Kohlenstoffatome verfügen. Ihrer Polyenkette fehlt nämlich formal eine Propen-Einheit. Die Gruppe der Uriolid-artigen Carotinoidbutenolide besitzt dagegen das reguläre C₄₀-Skelett.

Schema 3: Strukturen der Pyrrhoxanthin-artigen Carotinoidbutenolide

Als erstes seien hier die insgesamt sechs Pyrrhoxanthin-artigen Carotinoidbutenolide Pyrrhoxanthin $(3)^{[9,10]}$, Pyrrhoxanthinol $(4)^{[10]}$ und Hydratopyrrhoxanthinol $(5)^{[11]}$ sowie die erst 2005 als natürliche Carotenoidbutenolide isolierten Pyrrhoxanthinol-5,8-furanoxid $(6)^{[12]}$, Pyrrhoxanthin-5,8-furanoxid $(7)^{[12b]}$ und Cyclopyrrhoxanthin $(8)^{[12b,13]}$ vorgestellt (Schema 3). Charakteristisch für diese Verbindungen ist, daß ihre Heptaenkette in Konjugation mit einer *Acetylen*-Einheit und einer weiteren, endocyclischen Doppelbindung im "linken" Sechsring steht.

Schema 4: Strukturen der Peridinin-artigen Carotinoidbutenolide

Die Untergruppe der Peridinin-artigen Carotinoidbutenolide umfaßt sieben Verbindungen. Neben den mit eigenem Namen ausgewiesenen Verbindungen Peridinin $(9)^{[14]}$, Peridininol $(10)^{[10]}$, Anhydroperidinin $(11)^{[12b,15]}$, Anhydroperidininol $(12)^{[12b,16]}$, Hydratoperidinin $(13)^{[12b,13]}$ und Peridinin-5,8-furanoxid $(14)^{[17]}$ besitzt $15^{[18]}$ (noch) keinen Namen. Allen sechs Molekülen ist eine *Allen*-Gruppe gemein, welche eine Heptaenkette mit dem "linken" Sechsring verbindet (Schema 4).

Schema 5: Struktur der Uriolid-artigen Carotinoide

Im Gegensatz zu den beiden zuvor behandelten Untergruppen besitzen die Uriolid-artigen Carotinoide das "übliche" C₄₀-Skelett, die drei "zusätzlichen" C-Atome sind "am normalen Ort" in der Polyenkette eingebaut (gestrichelter Kasten in Schema 5). Darüber hinaus zeichnen sich Uriolid (**16**)^[19,20], Anhydrouriolid (**17**)^[11], Deepoxyuriolid (**18**)^[21] und 3'-Dihydrouriolid (**19**)^[11] durch eine Ethylengruppe aus, die den "rechten" Sechsring an die α -Position des Butenolids bindet.

Aus dieser Gruppe von 17 Naturstoffen treten zwei als *primi inter pares* besonders hervor, nämlich Pyrrhoxanthin (**3**, Schema 3) und Peridinin (**9**, Schema 4). Nicht nur, daß diese beiden sich strukturell sehr ähneln, von ihnen leiten sich auch die in ihrer Untergruppe befindlichen Naturstoffe ab (s. Schema 3 und Schema 4). Des weiteren sind es bisher die einzigen Carotinoidbutenolide, für die Totalsynthesen publiziert wurden.

Peridinin (9) ist – neben Fucoxanthin – das mengenmäßig am meisten biosynthetisierte Carotinoid.^[22,23] Es stellt mit einem Massenanteil von 70-80% das Hauptpigment in marinen Dinoflagellaten dar. In diesen Organismen bildet es zusammen mit Cholorphyll a einen sogenannten Lichtsammelkomplex (light harvesting complex, LHC), dessen Hauptfunktion in der Umwandlung solarer in chemische Energie besteht.^[24] Neben seiner Funktion in der Photosynthese wurde bei Peridinin (**9**) auch eine Antitumor-Aktivität dokumentiert.^[25] Aufgrund dieser interessanten Eigenschaften war Peridinin (**9**) Gegenstand sehr umfangreicher physikalisch-chemischer Untersuchungen.^[26] Dabei kommt die Tatsache, daß Peridinin (**9**) in immerhin Milligramm-Mengen aus Algenkulturen isoliert werden kann, den Bemühungen der Forscher entgegen. Der Bedeutung von Peridinin (**9**) wurde auch von synthetisch-organischer Seite Rechnung getragen; mittlerweile existieren drei Synthesen von Peridinin (**9**)^[27] und zwei des 6*S*-Allen Isomers von Peridinin (*epi*-Peridinin).^[28]

Pyrrhoxanthin (**3**), um das es in dieser Arbeit gehen soll, ist deutlich seltener und in geringerem Umfang als Peridinin (**9**) in der Natur anzutreffen. Es wurde erstmals 1968 von LOEBLICH und SMITH aus den Chloroplasten des marinen Dinoflagellaten *Gyrodinium resplendens* isoliert.^[9] Allgemein ist es als Mindermengen-Carotinoid in Peridininproduzierenden Dinoflagellaten anzutreffen.^[29] Mittlerweile wurde Pyrrhoxanthin (**3**) neben Peridinin und zahlreichen anderen Carotinoiden auch aus Muscheln wie z. B. *Pseudopterogorgia bipinnata, Tridacan croced*^[30] und *Corbicula japonica*^[12] sowie Seeanemonen wie *Anemonia sulcata* isoliert. Die Struktur konnte durch LIAANEN-JENSEN und Mitarbeiter bereits 1974 anhand chemischer und spektroskopischer Methoden aufgeklärt werden.^[31] Diese Arbeitsgruppe veröffentlichte 1992/1993 auch die absolute Konfiguration aufklären und umfangreiche NMR-Daten.^[32] Über die Funktion von Pyrrhoxanthin (**3**) in der Natur sowie seine physikalischen Eigenschaften liegen aufgrund seiner geringen Präsenz in Algen bisher keine Veröffentlichungen vor. Eine effektive Synthese von **3** wäre in der Lage, größere Mengen des Naturstoffs für physikalisch-chemische Untersuchungen bereitzustellen.

Bisher wurde erst eine Laborsynthese von *rac*-Pyrrhoxanthin (**3**) als Diastereomerengemisch publiziert (Kap. 1.3, Schema 11, Seite 14).^[33] Daneben gibt es eine stereoselektive Synthese allerdings des 9*Z*-Isomers von Pyrrhoxanthin (**3**) (Kap. 1.3, Schema 12, Seite 16), die bisher jedoch nur im Rahmen einer Dissertation veröffentlicht ist.^[34] Aus dem Arbeitskreis BRÜCKNER gelang darüber hinaus DINGER die Synthese von De(acetoxy)deoxypyrrhoxanthin (**70**, Schema 13, Seite 18), einem Pyrrhoxanthin-Modell (Kap. 1.3).^[35]

Das für alle Carotinoidbutenolide charakteristische Strukturmerkmal ist – wie schon in Schema 2 dargestellt – die γ -Alkylidenbutenolideinheit. Daher soll im folgenden zunächst auf die verschiedenen bereits existierenden Ansätze zur Synthese dieses Strukturelements eingegangen werden, bevor in Abschnitt 1.3 die angesprochenenen Totalsynthesen von Pyrrhoxanthin (**3**), seinem 9-Z-Isomer und zuletzt seinem Modell **73** beschrieben werden.

1.2 Methoden zur Synthese von γ-Alkylidenbutenoliden

Die γ -Alkylidenbutenolid-Einheit ist außerhalb der Carotinoidchemie nicht unbekannt. Von etlichen Naturstoffen, die dieses Strukturmerkmal enthalten, sind in Schema 6 einige Beispiele gezeigt. Der strukturell einfachste Vertreter unter diesen Naturstoffen ist Proteanemonin (**20**)^[36], es besteht praktisch nur aus der γ -Alkylidenbutenolid-Einheit. Strukturell komplexer sind die Naturstoffe Freelingyn (**21**)^[37], Lissoclinolid (**22**)^[38], Xerulin (**23**)^[39] und die Xerulinsäure (**24**)^[40], ein potenter Inhibitor der Cholesterinbiosynthese.

Schema 6: Strukturen ausgewählter nicht-carotinoider Butenolid-Naturstoffe

Aufgrund der weiten Verbreitung dieser Substruktur wurden zahlreiche Methoden zu ihrer Synthese entwickelt. Da diese in mehreren Übersichten umfassend dargestellt wurden,^[41] soll im Rahmen dieser Einleitung nur auf Konzeptionelles eingegangen werden.

Die meisten Methoden weisen nur eingeschränkte synthetische Anwendungsbreite auf. So wurden die ersten γ -Alkylidenbutenolide wie z. B. Freelingyn (**21**)^[37b] mit der WITTIG-Methode^[42] aus γ -(Phosphonium)butenoliden (z. B. **26**) und Aldehyden (z. B. **25**) synthetisiert (Schema 7). Die Synthese längerkettiger Polyen-Naturstoffe mit dieser Methode scheiterte jedoch.^[43]

a) Dimsyl-Na (1.0 Äquiv.), DMSO, 25°C, 18 h; 67%, 4Z:4E = 44:66.

Lediglich zwei Strategien erwiesen sich als universell geeignet für die Z-selektive Synthese von γ -Alkylidenbutenoliden (Schema 8).

Schema 8: Stereoselektive Synthesestrategien für γ-Alkylidenbutenolide^[41]

Bei der *Metallcyclisierungs-/Protonierungs-Methode* (Weg A)^[44] (Schema 8: **28** \rightarrow **29**) entsteht durch Koordination des Übergangsmetall-Katalysators an die Dreifachbindung einer 2-En-4-insäure (**27**) ein Elektrophil, das eine intramolekulare *trans*-Addition der Carbonsäuregruppe an das Alkin einleitet. Das intermediär gebildete *E*-konfigurierte γ -(α -Metallalkyliden)butenolid **A** setzt dabei durch eine *in situ*-Protonierung das γ -Alkylidenbutenolid **29** unter 100% Konfigurationserhalt und demzufolge *Z*-selektiv frei. Diese Methode fand in zahlreichen Naturstoffsynthesen Verwendung, beispielsweise bei der Synthese von Freelingyn (21)^[37b], Xerulin (23)^[39c] und Lissoclinolid (22).^[38b,c] KATSUMURA *et al.* konnten auf diese Weise die (zweite) Totalsynthese von Peridinin (9) realisieren.^[27b]

Das zweite in Schema 8 gezeigte Prinzip stellt die Methode der *anti-selektiven* β -Eliminierung von H-Het aus γ -(α -Heteroatom-substituierten Alkyl)butenoliden ($\mathbf{28} \rightarrow \mathbf{29}$) dar. Im Falle von Het = SO₂Ph handelt es sich um den letzten Schritt der von ITO *et al.* entwickelten *Sulfon-Methode*.^[52] **28a** wird durch die Addition eines α -lithiierten Allylsulfons an einen γ -Formyl-acrylester erhalten und muß gar nicht isoliert werden, da es *in situ* zum Butenolid **29** eliminiert. Mittels dieser Methode gelangen ITO und Mitarbeitern die ersten Totalsynthesen von Peridinin ($\mathbf{9}$)^[27] und Pyrrhoxanthin ($\mathbf{3}$)^[33]. Auf letztere wird in Kap. 1.3 ausführlich eingegangen.

Im Falle von Het = OH (**28b**) handelt es sich um die von BRÜCKNER *et al.* entwickelte stereoselektive β -Eliminierung. Sie besitzt bezüglich der *E-/Z*-Selektivität keine Beschränkungen, denn in Abhängigkeit der relativen Stereochemie von **28b** gestattet sie, wahlweise sowohl *E*als auch *Z*- γ -Alkylidenbutenolide herzustellen. Dies geschieht in zwei Schritten, nämlich dem Aufbau des Butenolids gefolgt von der Bildung der exocyclischen Doppelbindung durch eine stereospezifische *anti*-Eliminierung. Eliminiert werden dabei eine Abgangsgruppe (OH bzw. OR_{aktiviert}), die vicinal zum γ -C-Atom steht, und ein H-Atom, das am γ -C sitzt. Voraussetzung für das stereochemische Gelingen dieser Reaktion ist, daß unter den Reaktionsbedingungen außer der *anti*-Eliminierung weder eine *syn*-Eliminierung noch eine Epimerisierung der aciden γ -Position stattfinden. Die Synthese der diastereomerenreinen γ -(α -Hydroxyalkyl)butenolide als Eliminierungssubstrate wurde in unserem Arbeitskreis bisher auf viererlei Weise verwirklicht (Schema 9).