
CHAPTER 1

Introduction

For physical simulation and a natural, interactive movement of models in virtual environments the de-
tection of collisions is a crucial technology. The general term of collision detection can be split into
three parts – collision detection, which is the test if two or more objects collide (a decision problem),
collision determination, which determines which parts of the objects intersect (a computation problem),
and collision response, which answers the question, which action should be taken in response to a col-
lision (a computation problem). Most work on collision detection considers polygonal models as the
least common basis of all surface models. But with large curved models reasonable model parts must be
identified in the face set first in order to get efficient approaches. For collision detection and proximity
computation in virtual environments, the computation time is paramount over the computation precision.

The goal of this thesis is the design of algorithms for collision detection and proximity computation
and its implementation in a scene graph system. In this case we have chosen OpenSG [124], partly
due to the fact that we have been involved in the OpenSG PLUS project. Because of the wealth of
different model representations, in this work polygonal models and Catmull-Clark subdivision surfaces
are covered. Concerning the possible model movements, the rigid-body movements like translation,
rotation and scaling, and arbitrary model point movements (deformations) are handled.

Firstly, we give a short overview about scene graph systems for realtime rendering with rasterization
hardware, and next we introduce collision detection and proximity problems with their subtle variants.
Finally, we state the contribution of this thesis and give an outline of its chapters.

1.1 Scene Graph Systems

Scene graph systems are used to represent general scenes for realtime rendering with rasterization hard-
ware. They free the user from low-level problems, like processing the scene contents in multiple threads
(Threading) and loading and storing scenes in one of several file formats (File Formats, Textures).
Nearly all systems come with their own file formats in text and binary encoding. The binary encoding is
a serialization of all scene objects with type information and handling of platform specialties.

For the definition of renderable units geometric primitives (Primitives) have to be associated with
render materials (Material) and placed in a parent coordinate system. To achieve this, a rooted directed
graph structure (DAG, Structure) is established, in which a path from the root node defines a renderable
unit. Scene data (like geometric primitives and materials) can be shared in different places of the graph,
which helps bounding the memory consumption.

Technically, these systems are libraries in object-oriented programming languages and use interfaces
to the graphics hardware, e.g., OpenGL [134] or DirectX [38]. With each interface there are several pos-
sibilities to transfer geometric primitives to the graphics hardware. For non-changing geometry Display
Lists are a retained structure offered by all systems for maximum rendering performance. Different struc-
tures are available for changing, indexed geometry like Vertex Arrays and Vertex Buffer Objects (VBO).
The following table 1.1 gives an overview of the major systems available today.

1

2 1 INTRODUCTION

Scene Graph Open Inventor
(Coin3D)1

Performer 3.12 OpenSG 1.63 OpenSceneGraph4 NVSG 1.05 OGRE 1.010

Platforms SGI Irix, Sun Solaris,
Mac OS/X, Linux, MS
Windows

SGI Irix, Linux, MS
Windows

SGI Irix, HP-UX,
Mac OS/X, Linux
(32Bit/64Bit), MS
Windows (32Bit)

Linux (32Bit), MS
Windows (32Bit)

Linux (32Bit),
MS Windows
(32Bit/64Bit)

Linux, Mac OS/X, MS
Windows

Language C, C++ LGPL
(Coin3D)

C, C++ Commercial
Binary License

C++ ANSI, LGPL C++ LGPL C++ Free Binary Li-
cense

C++ LGPL

Structure DAG DAG Tree split into Node /
NodeCore

DAG distinguishing
between inner and leaf
nodes

DAG Tree split into Sce-
neNode / MovableOb-
ject

File Formats (for
scenes)

IV - Inventor ASCII
/ Binary, VRML 1.0,
VRML 2.0, DXF
(Dime), Open Flight
(Profit)

Cosmo Binary, Per-
former Binary, VRML
2.0

Import (OSB, OSG
- OpenSG ASCII /
Binary, OBJ, VRML
2.0, DXF, 3DS) Ex-
port (OSB, OSG,
VRML 2.0)

Import (IVE, OSG
- OpenScenegraph
ASCII / Binary, 3DC,
3DS, AC3, DW, DXF,
FLT, Freetype, IV,
LOGO, LWO, MD2,
OBJ, TXP, DirectX)
Export (IVE, OSG)

Import (NBF, NVSG
– NVSG Binary /
ASCII, NVB, VRML
2.0) Export (NBF,
NVSG)

XML mesh and skele-
ton

Textures (1D, 2D,
3D)

RGB, JPG, TGA,
BMP, TIF, GIF, PNG

RGB, JPG, TGA, TIF,
GIF, PNG

DDS, JPG, BMP, TIF,
RGB, GIF, PNG, DAT
(Raw 3D), MNG,
BIN, RAW, SGI

BMP, DDS, GIF,
MNG, PIC, PNG,
PNM, QT, RGB,
TGA, TIF, XINE

DDS, JPG, TGA,
BMP, TIF, RGB, GIF,
PNG (Any Size)

PNG, JPEG, TGA,
BMP or DDS files,
including unusual for-
mats like 1D textures,
volumetric textures,
cubemaps and com-
pressed textures
(DXT/S3TC)

Manipulators (for
primitives)

CenterballManip,
TabBoxManip,
TrackballManip,
HandleBoxManip,
TransformBoxMa-
nip, JackManip,
TransformerManip,
(DirectionalLightMa-
nip, PointLightManip,
SpotLightManip)

None MoveManipulator,
RotateManipulator,
ScaleManipulator

None TrackballTransform-
Manipulator

None

Material (for
primitives)

Standard OpenGL Standard OpenGL Standard OpenGL, Cg
and CgFX Effects,
GLSL Vertex and
Fragment Program,
Per-Pixel Phong
Material, Fresnel Ma-
terial, Multi Texture,
Multi Pass

Standard OpenGL, FX
Effects, GLSL Ver-
tex and Fragment Pro-
gram, Multi Texture,
Multi Pass

Standard OpenGL, Cg
and CgFX Effects,
Multi Texture, Multi
Pass

Standard, Vertex and
Fragment programs,
both low-level pro-
grams written in
assembler, and high-
level programs written
in Cg, DirectX9
HLSL, GLSL, Mul-
titexture, Multipass,
Material LOD

State (technical) Implicit as traversal
state (flags for over-
ride and ignore)

State sets (pfGeoState,
inheritable)

State sets (non-
inheritable, extensi-
ble)

State sets (inheritable) State sets (inheritable) Unknown

Primitives Indexed (Display
Lists, Vertex Arrays),
NURBS Curves,
NURBS Surfaces,
External: Terrain

Indexed (Display
Lists, Vertex Arrays),
Text, Ruled surfaces,
B-Spline surfaces,
COONS surfaces,
NURBS, Loop sur-
faces, Catmull-Clark
surfaces2

Indexed (Immediate,
Display Lists, Ver-
tex Arrays), Text,
NURBS, (Loop sur-
faces, Catmull-Clark
surfaces)

Indexed (Display
Lists, Vertex Arrays,
VBO), Adaptive
Terrain

Indexed (Display
Lists, Vertex Arrays,
VBO)

Indexed (vertex
buffers, index buffers,
vertex declarations
and buffer mappings),
Biquadratic Bezier
patches, Progressive
meshes, Adaptive
Terrain

Threading Locking, Thread-safe
render traversals
(Coin3D with Version
2.0)

Own Model APP-
CULL-DRAW

Very General Model:
Multi-Buffered Field
Data, High-level
synchronization by
ChangeList

Own Model
UPDATE-CULL-
DISPATCH-DRAW

Locking (single writer
/ multiple readers)

None

Specialties OpenGL Frame Rate Control,
OpenGL

Regular Volume
Rendering, Scene
Graph Optimization,
Skeletal Animation by
Cal3D11, OpenGL

Paged LOD, Skele-
tal Animation by
Cal3D11, OpenGL

Support for SLI (PCI/-
Express NVidia Clus-
ters), OpenGL

Skeletal Animation,
Static geometry
batcher, Render Sys-
tem switchable to
OpenGL and DirectX

Table 1.1 Side by side comparison of different scene graph systems.

In Chapter 2 we turn to the details of the OpenSG scene graph system used in this thesis. The graph

1Open Inventor http://oss.sgi.com/projects/inventor, http://www.coin3d.org
2OpenGL Performer http://oss.sgi.com/projects/performer, partly migrated from former OpenGL Optimizer
3OpenSG http://www.opensg.org, http://opensg.vrsource.org
4OpenSceneGraph http://www.openscenegraph.org
5NVSG SDK http://www.nvidia.com/object/nvsg_home.html
6Java3D SUN Developer http://java.sun.com/products/java-media/3D/
7PLIB http://plib.sf.net
8SGL http://sgl.sf.net
9OpenRM http://openrm.sf.net

10OGRE http://www.ogre3d.org
11Cal3D http://osgcal.sourceforge.net

1.2 Collision Detection 3

structure with simple bounding volumes for the nodes allow for important rendering optimizations. In
most cases just a small amount of Geometry nodes is visible due to their relative location to the camera
eye point (Frustum Culling) or due to occlusion (Occlusion Culling). The exploitation of occlusion to
speed up rendering is considered in Chapter 8.

1.2 Collision Detection

Collision detection and proximity computation can be seen as additional services in a scene graph system.
In detail these are

Static Collision Determination. Given the current scene graph state, detect if geometry in the scene
graph is colliding. Additionally, report the face pair, the points and normals at the collision.

Pseudo-Dynamic Collision Determination. These variants of collision determination address the con-
nection between the collision determination service and the simulator. With pseudo-dynamic col-
lision determination, the simulator performs small step sizes and performs static collision determi-
nation for each step.

The pseudo-dynamic collision determination has the advantage that static collision tests are quite
fast compared to dynamic collision tests. Potential problems are that the simulator step size has to
be small for fast moving objects or there can be issues of one object passing through another in the
worst case. Also the simulator should be able to work with penetration cases.

Dynamic Collision Determination, also called Continuous Collision Determination. In dynamic colli-
sion determination, the problem is extended by a time parameter. It must be detected if there is a
collision in the given time interval between consecutive frames, and the first time of intersection
must be reported. Then, the first time and location of collision is known and larger time steps are
possible.

Minimum Distance Computation. Given the current scene graph state in which there is no collision,
compute the minimum distance between geometry in the scene graph. Additionally, report a face
pair and the points having minimum distance.

In general the computation can be structured into a pipeline much like the rendering pipeline. The
collision detection pipeline is shown below with its pipeline stages. The front end consists of the object
handler, which allows us to define and identify the objects and to state the application’s collision interest.

C
ol

lis
io

n
Q

ue
ry

Application Collision Result

Collision Detection Pipeline

Broad Phase Narrow PhaseObject Handler

Object Definitions

Collision Interest

(e.g. Indexed face set and
local coordinate system)

(e.g. Two subtrees of the scene)

e.g.
Sweep and Prune
Regular Grid
None

e.g.
Divide-and-Conquer
on BVol-Hierarchy
Exact Algorithm
on n*m face pairs

4 1 INTRODUCTION

A first neighbor-finding stage is entered, which reduces the set of all objects to smaller neighbor sets
of the interesting objects. Within each neighbor set a pairwise algorithm is performed. For this pairwise
stage several algorithms have been proposed. For example, hierarchies of simpler bounding volumes on
the primitive set are used to stop the search for colliding primitives in sub-quadratic time. We present the
realization of this pipeline framework from a software engineering point of view and its integration into
the scene graph system in Chapter 7.

1.3 Thesis Contribution and Outline

The most general approach for proximity computation uses hierarchies of simple bounding volumes con-
taining model parts. Several bounding volumes have been proposed including spheres [78], axis-aligned
bounding boxes (AABB) [148], oriented bounding boxes (OBB) [96], discrete orientation polytopes
(k-DOP) [85] and arbitrary convex hulls [40]. Here, the performance depends on the tightness of the
bounding volume, the efficiency of the intersection test for the bounding volume and the strategy for
hierarchy generation. The previous work on bounding volume hierarchies is introduced in Chapter 3,
Section 3.2.

For k-DOPs a major performance weakness is the intersection test if arbitrary model rotations and
scalings are allowed. Therefore, in this thesis a fast table-based algorithm for the k-DOP realignment is
developed and presented in Chapter 4. Using the realignment algorithm a pairwise collision detection
and minimum distance computation is possible. This contribution was presented in Christoph Fünfzig
and Dieter Fellner. Easy Realignment of k-DOP Bounding Volumes. In Proceedings Graphics Interface,
pages 257–264, Halifax, Canada, June 2003.

Eye

Shadow ray

Light source

Cell’s list of objects

Object 1

Object id Parameter value
1

––
––

3.01

Figure 1.1 Light buffer used to speed up shadow tests during ray tracing [45, 108]. Each cell entry of the
light buffer lists the objects intersected by a ray passing through the cell.

Because bounding volume hierarchy approaches require considerable time for update after model
deformations, we extended the work with methods using spherical model representations in Chapter 5.
These also allow for efficient model rotation and scaling. In Section 5.1 we derive a regular sampling
of the sphere corresponding to the six sides of a cube. The resulting hierarchical spherical distance field

1.3 Thesis Contribution and Outline 5

cA

pA

cB
pB

Figure 1.2 Directional look-up table to initialize the intersection test for convex polytopes by Voronoi
marching [39].

enables an efficient collision detection with flexible collision information. It can be stored in a space-
efficient way without compromising the algorithm’s runtime. These results were published in the journal
Christoph Fünfzig, Torsten Ullrich, and Dieter Fellner. Hierarchical Spherical Distance Fields for Collision
Detection. IEEE Computer Graphics & Applications, 26(1), 2006. Spherical representations have not
been so popular in the past. They have been used mainly as caches to initialize other precise algorithms.
In ray tracing, the spherical cache, called Light Buffer, allows us to conservatively find candidates for the
shadow tests for point source lighting, as shown in Figure 1.1. For collision detection of convex polytopes
a directional lookup has been proposed to initialize the intersection test, called Voronoi marching. The
table assists in finding a nearby feature to initialize the polytope marching.

Since an update of the regular sampling after model deformations is difficult, the complete recompu-
tation is easier. Section 5.2 applies spherical Bézier surfaces for a more model-dependent approximation.
In this thesis a spherical Bézier approximation is used for the first time for quick rejection of large model
parts during collision detection between deformable models. A description of how to compute the Bézier
approximation for polygonal models and the deformation model similar to freeform deformation [133]
follows.

Chapter 6 covers distance computation and collision detection for freeform models in Catmull-Clark
representation. Here, a Bézier approximation of the limit surface is proposed, which can be used for
numerical distance computation and for collision detection. The Bézier approximation allows a unified
handling of regular patches, irregular patches and patches with special features like sharp edges or dart
vertices. The collision detection proceeds by using the convex hull of its control points as bounding
volume and subdividing the surface patch in case of intersection. For both subproblems, a large body of
methods is available, which is presented succinctly in Chapter 3, Section 3.1.

Chapter 8 considers occlusion culling in a scene graph system, where many concepts and algorithms
from collision detection can be transfered. The contribution of this chapter is a new organization of
the occlusion culling queries into a standard front-to-back-sorted traversal. Optimizations for maximum
performance like state sorting and front-to-back sorting are analyzed in detail.

Finally, Chapter 9 gives a detailed summary of this work and concludes with possibilities for future
research. Section 9.1 especially addresses the thesis contribution.

6 1 INTRODUCTION

1.4 Notation

This section provides an introduction to the notation used in this text.
For points of an affine space we use small letters (p, q, . . .). For vectors in its corresponding vector

space we use small letters with a right arrow above them (�v, �w, . . .). In the coordinate representation
of points or vectors we always assume column vectors. We use the symbol � to denote the unit sphere
around a fixed center point c. For points on the sphere and the corresponding radial vectors we sometimes
omit the right arrow above them.

We use single bars |�v| for the lengths of vectors in�n measured in the 2-norm |�v| :=
√

v2
1 + . . .+ v2

n,
if not referring to a different norm in the context or in the subscript explicitly. We denote normalized
vectors by �v0, i.e., �v0 := �v

|�v| . For a computation sequence in an algorithm we put superscripts within

parentheses to distinguish them from other superscripts, for example p(i), �s(i). We denote the scalar
product between points and vectors by a dot symbol, i.e.,�v ·�w; we only pay attention to vector formats if
the vector is in coordinate representation, and we use transposition �vT to change a column vector into a
row vector and vice versa.

For a matrix A ∈ �n×m we use Ai, j ∈ � to denote the entry in the i-th row, j-th column, we use
Ai,· ∈�m as short form for the i-th row, which is a row vector, and A·, j ∈�n as short form for the j-th
column, which is a column vector naturally.

We prefer to write higher derivatives with an operator d(i) for the i-th derivative and d(i)
�v for the i-th

derivative in direction �v. Partial derivatives are written with the coordinate in the subscript, for example
∂x, ∂y, ∂z.

The Kronecker symbol

δi, j :=
{

1, if i = j
0, if i �= j

is used to write some equations in a short form.

CHAPTER 2

OpenSG

OpenSG is a rendering library for desktop graphics applications as well as multi-screen projection sys-
tems like Powerwalls and CAVEs. It has been developed by Dirk Reiners [124] and colleagues since 2002
and extended in the BMB+F (German Ministry of Education and Research) project OpenSG PLUS. It
uses a scene graph as its paradigm for scene representation. The next Section 2.1 presents the core sys-
tem for building the scene graph structure and its functionality. The presentation is based on OpenSG
version 1.6 from August 2005. Subsection 2.1.4 gives some technical details about fieldcontainers used
as the main data model. The data model contains some specialties for OpenSG’s multi threading support
(Section 2.2) and for the cluster synchronization (Section 2.3). The chapter concludes with an overview
about concepts for association of secondary data structures with the scene graph, which is necessary for
applications like collision detection.

2.1 Core System

2.1.1 Scene Graph Structure

Early scene graph systems use a directed acyclic graph (DAG) to represent the scene. OpenSG uses a
bipartite graph to store the scene. Node objects build up a rooted tree, where each instance references
a NodeCore object, which stores function-dependent data. The wealth of different NodeCore classes
make up the system functionality, and the following Section 2.1.2 gives some examples.

All Node objects have some common attributes. One is the bounding volume. The bounding volume
of a node is a simple volume, usually an axis-aligned box or a sphere, that encloses the contents of all
the nodes below the current one. It is used by the scene graph to check the node for visibility. If the
bounding volume of the node is outside the view frustum (view frustum culling), everything below it
cannot be visible and does not have to be passed to OpenGL at all. For large scenes this can have a
significant impact on rendering speed.

Different scene graph systems have slightly different organizations. OpenSG keeps the list of chil-
dren in every node, even if it is not used for leaf nodes, since it unifies the structures and simplifies
traversals. It also keeps a pointer to the parent node. A traversal visits each node and executes a functor
depending on the traversal type and the node type. In OpenSG the traversals RenderAction for scene
graph rendering and IntersectAction for ray intersection are available.

The tree structure of the OpenSG scene graph has the following consequences:

1. Reusing scene parts

Reuse of a scene part requires the creation of the same tree structure with Node objects, while shar-
ing the referenced scene data in NodeCore objects (available as function NodePtr clone-
Tree (const NodePtr& root)). For modification of the scene data there is another func-
tion NodePtr deepCloneTree (const NodePtr& root, const std::string&
shareString=""), which clones all NodeCore objects of types not contained in the comma-
separated type list shareString (e.g., "Transform,MaterialGroup").

7

8 2 OPENSG

DirectionalLightDirectionalLightDirectionalLight
GroupGroupGroup
TransformTransformTransform
GeometryGeometryGeometry
ShapeShapeShape
SceneSceneScene

Figure 2.1 Car model with two parts, the car body and its four tires, all instances of a tire prototype (top
row). Corresponding scene graph structure (bottom row).

2.1 Core System 9

Figure 2.2 Reuse of a scene part (here a single Geometry) with a DAG-based scene graph (left image)
and the OpenSG scene graph (right image).

2. Path identification

Figure 2.3 Identification of paths by a node sequence in a DAG-based scene graph (left image) and by a
single node in the OpenSG scene graph (right image).

Path identification is a problem in DAG-based scene graphs. A node sequence from the root is
necessary to uniquely identify a path and the corresponding scene part. With a tree structure like
in OpenSG, a reference to a single node also identifies a unique path, namely its path to the root.

2.1.2 Scene Graph Functionality

Each node in the tree structure is assigned a type by its NodeCore object. The NodeCore objects make
up the scene contents and the NodeCore objects on a path from the root usually define a renderable
scene part. Leaf nodes usually are of type Geometry, which contains OpenGL primitives like points,
lines, triangles, connected triangles, quadrangles and polygons.

Other node types for inner nodes can roughly be categorized into

1. Groups

Group, ComponentTransform, Transform, MaterialGroup, InverseTransform,
Switch, DistanceLOD, Inline, ProxyGroup, Billboard

2. Lights

DirectionalLight,PointLight, SpotLight

3. Drawables

Geometry, Particles, (NURBS)Surface, Slices, DVRVolume, DynamicSubdivi-
sionCC, DynamicSubdivisionLP

