
Chapter 1

Introduction

In many industrial processes the flow behaviour of liquids plays an important
role. The macroscopic flow properties as volume flux and pressure loss are
determined by the local structure of the flowing substance and production
efficiency, optimization processes, security, ecological aspects or quality man-
agement might be affected extremely. Within the production of many mate-
rials suspensions are involved. The filler material affects the properties of the
material that for instance may be paints and varnish, ceramics, pastes and
slurries, paper, certain foodstuffs or cosmetics. Also non-industrial fields as
medical science (blood circuits) and phenomena in nature like dunes formed
by sedimentation are connected with the streaming of a particle-laden fluid.
In the shear flow of a suspension hydrodynamic particle-particle interactions
lead to stochastic particle movements and the so-called hydrodynamic dif-
fusion takes place. A demixing might be generated if a systematic particle
migration orthogonal to the flow direction is induced by gradients of the inter-
action frequency and of the resistance force to transverse particle movement.
These phenomena were investigated experimentally and analyzed theoreti-
cally (for instance by Happel and Brenner [12]). A gradient of resistance
also affects the particle drift. Such a gradient originates in the vicinity of
solid boundary walls or a viscosity gradient. Near the wall the resistance
coefficient regarding particle movements orthogonal to the wall is increased.
An enhanced relative viscosity coming along for instance with an increased
particle concentration also leads to an increased resistance coefficient. A
laminar tube flow of a suspension at steady state develops a boundary layer
at the wall with a low particle concentration leading to the phenomenon of
pseudo wall slip resulting in a decreased pressure difference related to a con-
stant particle flux. Due to inhomogenity the local shear rates, velocities and
particle concentrations vary causing differing residence times in the tube and
different degrees of mechanical strain.
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The overall object of this work was the development of a phenomenolog-
ical theory to describe the wall influence in a shear flow of a suspension
combined with an experimental investigation. Due to time constraints the
experimental analysis was confined to a chiefly qualitative character. As far
as the theory is concerned an approximation of the resistance force under
wall influence was set up leading to a new diffusion equation. The model was
employed in order to calculate the shear rate profiles, velocity profiles and
particle concentration distributions of a shear-flowing suspension including
wall influence and gravity as well as the time-dependant gravity effect of a
non-flowing suspension. By means of nuclear magnetic resonance (NMR)
methods suspensions and solutions were analyzed experimentally to evaluate
the model. This powerful technology allows the detection of spin densities of
nuclei operating non-invasively. The distinction between protons and non-
protons (H-NMR) makes the imaging of particle distributions and velocity
profiles in suspensions possible. In this regard a special shearing device fea-
turing an oscillating tube flow was constructed to realize a timely unlimited
shearing process.



Chapter 2

Theoretical Background

2.1 Rheological Basics

2.1.1 Definitions

The main topic of the rheology (greek rheos=flow) is the constitutive be-
haviour of fluids. The relation between resistance and deformation is mea-
sured (rheometry), described (phenomenological rheology), expressed by math-
ematical modelling (theoretical rheology) and interpreted investigating the
molecular processes (structure rheology).
The system response to a deformation consists of shear stresses τij parallel
to the surface areas and of normal stresses σii perpendicular to these (cp.
fig. 2.1). The representing stress tensor indicating the nomenclature is:

S =

⎛
⎝ σxx τxy τxz

τyx σyy τyz

τzx τzy σzz

⎞
⎠

Usually an isotropic pressure p is separated from S

S = −pE + T

leading to

S =

⎛
⎝ −p + τxx τxy τxz

τyx −p + τyy τyz

τzx τzy −p + τzz

⎞
⎠ .

τ is called ′extra stress tensor′. A flowing fluid may experience varying normal
stresses. In this case the pressure is defined as:

p = −(σxx + σyy + σzz)
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Figure 2.1: Shear stresses and normal stresses of a volume element
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Figure 2.2: Couette Flow

Torque balance proves that τij = τji. The kinematics of a simple shear flow
(fig. 2.2) results in the extra stress tensor

T =

⎛
⎝ σxx τ 0

τ σyy 0
0 0 σzz

⎞
⎠ .
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Below the definition of the typical rheological properties is explained con-
sidering a volume element of a substance between two parallel plates at a
distance of H as shown in fig. 2.2 (Couette flow). The element is sheared
by moving one of the plates. To pull the plate along the fluid a force F is
needed due to the occurring friction that results from molecular momentum
transport caused by momentum gradients and molecular interactions. The
shear stress τ is defined as the force F per area:

τ =
F

A

The shear strain γ is defined as the moved distance X per height unit (in
the case of a Couette flow it is constant due to the linear velocity profile):

γ(y) =
dX(y)

dy
= X/H = tan δ

Here at the plates no slip is presumed. The shear angle δ is

δ = arctan
X

H

The shear rate is the obtained strain per time:

γ̇(y) =
dγ

dt
=

d(u(y))

dy
=

U

H
(2.1)

A central rheological property is the dynamic viscosity η. Characterizing the
flowability of a substance it is defined as the proportionality factor linking
shear rate and shear stress:

η =
τ

γ̇
(2.2)

The dynamic viscosity strongly depends on temperature. When increasing
the temperature fluids show viscosity reduction as the dominating intermolec-
ular interactions are weakened whereas within gases a higher collision rate
makes the sliding by of the shear layers more difficult leading to a rise of
the viscosity. Furthermore considering suspensions the viscosity is a function
of particle size and fibre length, respectively shape of particles and other
properties of the system.

Shear rate dependance of viscosity Fig. 2.3 shows the viscosity de-
pendance on the shear rate of different types of material at steady state.
A special case is the newtonian fluid with a constant viscosity with respect
to time as well as to shear rate. The most famous example is water. At
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Figure 2.3: Shear rate dependance of viscosity function

higher shear rates the viscosity might decrease due to structural changes
within the molecular scale of the substance. This behaviour is called shear
thinning or pseudo plasticity showed by polymer solutions mostly. Shear
thickening substances basically including some highly concentrated suspen-
sions and dispersions, pastes and slurries, become more viscous at high shear
rates leaving the elements of the disperse phase not enough time to sidestep
each other generating transverse forces via momentum exchange. Some sub-
stances require a certain shear stress till they deform, the shear yield stress,
corresponding to an infinite zero-shear viscosity. A typical example for a fluid
with shear yield stress τF (Bingham fluid) is oil paint. Some shear thinning
substances also possess a yielding point. The two-viscosity model represents
substances developing two newtonian regions. A common characterization
of a non-newtonian fluid is given by the Power Law (Herschel-Bulkley):

η(γ̇) =
τF

γ̇
+ kγ̇n−1

τF = 0 delivers the Ostwald/de Waele law whereas n = 1 describes a Bing-
ham fluid.

Time dependance of viscosity Possible time dependances of the viscos-
ity if shearing starting from a state of rest are displayed in fig. 2.4. An
increase of the viscosity is called rheopexy, a decrease of the viscosity is
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Figure 2.4: Time dependance of viscosity function

called thixotropy. Both types of behaviour occur at disperse systems origi-
nating in the structure of the disperse phase. Thixotropy also might be the
consequence of changing molecular orientation or rearranging of molecular
structures. The responsible mechanisms may be reversible or irreversible.
Every point of the viscosity functions in fig. 2.3 is the asymptotic value of
the viscosity for t → ∞ in the diagram of fig. 2.4.

A non-newtonian substance generally shows different normal stresses de-
scribed by the first and the second normal stress difference:

N1(γ̇) = σ1(γ̇) − σ2(γ̇)

N2(γ̇) = σ2(γ̇) − σ3(γ̇)

The first and the second normal stress coefficients are defined as:

Ψ1 =
N1(γ̇)

γ̇2

Ψ2 =
N2(γ̇)

γ̇2

2.1.2 Disperse Systems

The viscosity function of suspensions is dependent on the viscosity of the
matrix fluid as well as on the volume concentration φ of the disperse phase.
A great amount of formulas was created to describe this relation. Our choice
is the Krieger-Dougherty equation stated by Krieger and Dougherty [26] valid
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for suspensions with a newtonian matrix fluid of the viscosity η0:

η(φ) = η0

(
1 − φ

φm

)−2

(2.3)

Maximum concentration φm is the theoretically maximal concentration at
which the transition to bulk solid takes place implicating an infinite viscosity.
Here φm = 0.68. The relative or reduced viscosity η(φ)/η0 relates η to the
viscosity of the matrix fluid.

Wall slip Most highly concentrated suspensions possess a yield stress. The
system might slide along the wall as between wall and particles a thin layer
of pure matrix fluid can be found. If the applied shear stress is less than
the yield stress either there is no flow or flow is pure plug flow and there
is no wall adhesion. Applying a shear stress higher than yield stress makes
internal shear flow possible and there may be a superposition of wall slip
and internal shear flow. It is possible to distinct these two by the method
of Mooney. It is assumed that the volume flow is composed of the flow rate
due to wall slip V̇W and the flow rate due to shear V̇S:

V̇ = V̇W + V̇S

Second assumption is the dependancy of the slip velocity uW solely on the
wall shear stress:

uW = f(τW )

Then the total flow rate of a shear flow through a capillary with length L
and radius R is:

V̇ = πR2uW +
πR3

τ 3
W

∫ τW

0

τ 3

η(τ)
dτ

⇔ V̇

πR3
=

uW

R
+ A(τW )

Measuring the volume flow using different capillaries with the same ratio
L/R (for example with a twin-capillary) gives the slip velocity as the slope
in the L/R,V̇ /πR3-diagram.

Pseudo wall slip If the shear rates near the wall are significantly higher
than farther away flow velocity increases fast within a short distance from
the wall. Macroscopical observation might lead to the (wrong) impression
that the system is sliding at the wall. This phenomenon is referred to as
pseudo wall slip [6].
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2.1.3 Rheometers

Devices for measuring rheological properties are called rheometers. There is
a great variety of them, each with its own specific advantages and disadvan-
tages. In this section only a small selection is described.
There are many types of rotational rheometers featuring an axially symmet-
rical design consisting of a rotating and a non-rotating component. Either
the torque and with it shear stress or the angular velocity and with it the
shear rate can be set obtaining in each case the other parameter being the
measured quantity as a response of the system (CSS: Controlled Shear Stress,
CSR: Controlled Shear Rate). Significant advantages are the realizability of
different geometries, different basic tests including oscillating shear, a wide
working range and the possibility of investigating the normal stresses. Within
the following specific description of rotational rheometers no slip is assumed.

Parallel Plate Rheometer

The rotating element is a plate (fig. 2.5). As the local angular velocity ω of

y r
R

Ω,M

ωH

Figure 2.5: Parallel plate rheometer

a layer of liquid is dependant on the position y and the angular velocity of


