Inhaltsverzeichnis:

1.	Einleitun	g	1
2.	Führung	en im Maschinen- und Präzisionsgerätebau	3
	2.1	Die Aufgaben von Führungen	3
	2.2	Führungsfehler und ihre Ursachen	5
	2.3	Kompensierung von Führungsfehlern	6
3.	Erkenntr	nisstand über aerostatische Führungen	9
4.	Aerostatische Führungen		15
	4.1	Einteilung aerostatischer Führungen	15
	4.2	Das aerostatische Führungselement als Basis- element aerostatischer Führungen	19
	4.3	Wirkungsweise eines aerostatischen Führungs- elementes	20
	4.4	Ausführungsformen aerostatischer Führungs- elemente	22
5.	Theoretis	sche Grundlagen	25
	5.1	Die NAVIER-STOKES'schen Bewegungsglei- chungen	25
	5.2	Der Luftmassestrom <i>m</i> durch Abströmspalt und Einströmöffnungen	33
	5.2.1	Ausflussgleichungen für den durch ebene paral- lele Flächen begrenzten Abströmspalt	33
	5.2.1.1	Geradlinige Parallelströmung	33
	5.2.1.2	Divergierende Radialströmung	38
	5.2.2	Ausflussgleichungen für die Einströmöffnungen	40
	5.2.2.1	Drosseln mit laminarer Strömung	40
	5.2.2.2	Drosseln mit turbulenter Strömung	42
	5.3	Notwendigkeit einer einfach zu handhabenden Näherungstheorie zur Berechnung aerostati-	
		scher Führungen	45

6.	Näherungstheorie		47
	6.1	Das Führungselement mit Rechteckform	47
	6.1.1	Druckprofil im Führungsspalt	47
	6.1.1.1	Druckverlauf im Abströmspalt bei Parallelströmung	51
	6.1.1.1.1	Druckverlauf unter den Bedingungen der Kontinuums- oder Schichtenströmung	51
	6.1.1.1.2	Druckverlauf unter den Bedingungen der Gleitströmung	53
	6.1.1.2	Druckverlauf im Abströmspalt bei divergierender Radialströmung	60
	6.1.2	Tragfähigkeit des rechteckförmigen Führungs- elements	63
	6.1.2.1	Tragkraft F	63
	6.1.2.2	Effektive Druckfläche $A_{\rm eff}$	65
	6.1.2.3	Beiwerte des rechteckförmigen Führungsele- mentes	67
	6.1.2.3.1	Flächenbeiwert $k_{\rm A}$	67
	6.1.2.3.2	Widerstandsbeiwert $k_{\rm W}$	83
	6.1.3	Kennzahl B^* des rechteckförmigen aerostatischen Führungselementes	85
	6.1.3.1	Laminare Drosselströmung	87
	6.1.3.2	Turbulente Drosselströmung	87
	6.2	Das Führungselement mit Kreisform	89
	6.2.1	Druckprofil im Führungsspalt	89
	6.2.1.1	Druckbereich "Mittelfläche $A_{\rm M}$ "	90
	6.2.1.2	Druckbereich "Randfläche A _{Rr} "	90
	6.2.2	Tragfähigkeit des kreisförmigen Führungsele- mentes	91
	6.2.2.1	Tragkraft F	91
	6.2.2.2	Effektive Druckfläche A_{eff}	93

6.2.3	Daivyarta das Irraisförmisan Eührungsalamantas	96
6.2.3.1	Beiwerte des kreisförmigen Führungselementes Flächenbeiwert k_A	96 96
6.2.3.2	Widerstandsbeiwert $k_{\rm W}$	96
6.2.4	Kennzahl B^* des kreisförmigen Führungselementes	98
6.2.4.1	Kennzahl B_L^* für Führungselemente mit laminare Drosselströmung	99
	Kennzahl B_T^* für Führungselemente mit turbulenter Drosselströmung	99
6.3	REYNOLDS'sche Zahl Re	101
6.3.1	REYNOLDS'sche Zahl für laminare parallele Spaltströmung	101
6.3.2	REYNOLDS'sche Zahl für laminare divergierende Spaltströmung	109
6.3.3	REYNOLDS'sche Zahl für laminare Drossel- strömung	111
6.4	Steifigkeit eines aerostatischen Führungsele-	
	mentes	117
6.4.1	Steifigkeit bei turbulenter Drosselströmung	117
6.4.1.1	Optimale Steifigkeit	122
6.4.1.2	Maximale Steifigkeit	127
6.4.2	Steifigkeit bei laminarer Drosselströmung	128
6.5	Federkennlinie eines aerostatischen Führungs- elementes	134
6.6	Einfluss es Kammervolumens auf die dynamische Stabilität eines Führungselementes	139
6.6.1	Stabilitätskriterium für Führungselemente mit turbulenter Drosselströmung	144
6.6.2	Stabilitätskriterium für Führungselemente mit laminarer Drosselströmung	149

	6.7	Einfluss von Länge und Querschnitt der Verteilerkanäle auf das Druckprofil	152
	6.7.1	Druckabfall im Zubringerkanal	153
	6.7.2	Druckabfall in Kanalelementen	158
	6.8	Statische Drehsteifigkeit eines Führungselementes	170
	6.9	Luftverbrauch	171
7.	Berechnungsunterlagen		173
	7.1	Berechnungsschemata I und II	173
	7.1.1	Berechnungsschemata I für ebene rechteckförmige Führungselemente mit turbulenter Drosselströmung	175
	7.1.2	Berechnungsschemata II für ebene kreisförmige Führungselemente mit turbulenter Drosselströ- mung	185
	7.2	Das Berechnungsprogramm AERFUE	195
	7.3	Beispiele für die Anwendung des Berechnungsprogrammes AERFUE	199
	7.3.1	Dimensionierung eines Führungselementes	199
	7.3.2	Nachrechnung eines Führungselementes	201
8.	Praktische Beispiele für den Einsatz aerostatischer Führungen im Maschinen- und Präzisionsgerätebau		205
	8.1	Die Dreikoordinatenmessmaschine DKM 05-1000 DA	205
	8.1.1	Aufbau der Messmaschine und Anordnung des Führungssystems	205
	8.1.2	In der DKM 05-1000 DA verwendete Rechteck- Führungselemente und ihre Einsatzbedingungen	207
	8.1.3	Experimentelle Untersuchung ausgewählter Parameter der Führungselemente	213

Inhaltsverzeichnis XIII

8.1.3.1	Ausflusszahl α der zum Einsatz kommenden	
0.1.5.1	Mikroblenden	213
8.1.3.2	Druckmessungen im Führungsspalt eines Führungselementes	210
8.1.3.3	Gemessene Luftdurchsätze durch die Einström- öffnungen und den Führungsspalt der Füh- rungselemente 2 und 1	223
8.1.3.4	Realisierte Federkennlinien $h = h(F)$ der in der Dreikoordinatenmessmaschine DKM 05-1000 DA eingesetzten Führungselemente	23:
8.1.3.4.1	Auswirkungen von Nebenluft auf die Feder- kennlinie eines Führungselementes	24
8.1.3.4.2	Einfluss von Ebenheit und Rauhigkeit der Führungs- und Gegenfläche auf das statische Verhalten eines Führungselementes	242
8.1.3.4.3	Bestimmung der kleinsten praktisch sinnvollen Spalthöhe	24
8.1.3.5	Neigung der Führungselemente zu selbsterregten Schwingungen	248
8.1.3.6	Qualitätsparameter der Dreikoordinatenmess- maschine DKM 05-1000 DA	249
8.2	Die Ultra-Präzisionslängenmessmaschine PRE- CIMAR 828 CiM	25′
8.3	Weitere Einsatzbeispiele aus dem Maschinen- und Gerätebau	26
8.3.1	Aerostatisch geführtes Schlittensystem einer Fräsmaschine /52/	26.
8.3.2	Höhenmessgeräte DIGIMAR 600 CX1 und DI- GIMAR 1000 CX2	263
8.3.3	Aerostatisch gelagerte Doppelsphärenspindel /52/	269
	für die Konstruktion und Fertigung aerostati- rungen und Führungselemente	2

W 7 1	T W 7
V I	• /
- X	•
/ N	

10. Literaturverzeichnis

275