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2 1. Introduction

Some Basic Concepts of Regularization

Generalized mixed models are widely used to model correlated and clustered responses.
For example, the dependence structure of longitudinal data and of designs with repeated
measurements can be captured. Due to heavy computational problems in the estimation
of parameters modeling usually is restricted to a moderate number of predictor variables.
When many predictors are available, estimates often become very unstable. Therefore,
procedures to select the relevant variables are very important.
A classical approach to the selection of predictors is subset selection, which is based on

test statistics with the usual stability problems of forward-backward algorithms, which are
due to the inherent discreteness of the method (see for example Breiman, 1996b).

Boosting

A different and more timely approach to variable selection that has been developed in
the machine learning community is based on boosting methods. According to Hastie et al.
(2009), boosting is one of the most powerful learning ideas introduced in the last 20 years.
Though it was originally designed for classification problems, it can be also applied to
regression. An extensive and enlightening overview on recent boosting algorithms can be
found in Bühlmann and Hothorn (2007). The general concept of converting a weak learning
algorithm into one that achieves arbitrarily high accuracy has been developed by Schapire
(1990). Thereby a “weak learner” characterizes a classification method that performs only
slightly better than random guessing. This concept can be seen as the break through for
several new methods, so-called ensemble schemes, which rely on the principle of generating
repeated predictions by reweighting or resampling the original data set and finally averaging
among the individual classifiers. Examples include bagging (Breiman, 1996a) or random
forests (see for example Breiman, 2001). With the emergence of ensemble schemes also the
most well known boosting algorithm has been developed, namely the AdaBoost algorithm
for binary classification (Freund and Schapire, 1996, 1997), which uses a suitable base
procedure1 as classifier, such as, for example, a classification and regression tree (CART,
Breiman et al., 1984).
It was not until Breiman (1998) found the decomposition of the prediction error of

a classifier into bias and variance, that the success of AdaBoost could be satisfyingly
explained, namely that it is able to reduce both bias and variance of a base procedure.
Another important aspect of boosting concerns the optimal number of boosting steps.
Contrary to the initial assumption, that AdaBoost is immune to overfitting, it is clear
nowadays that boosting algorithms eventually overfit and, thus, the optimal number of
iterations represents a tuning parameter which needs to be determined in some data-driven
way, for example using some cross-validation scheme.
The next important step in the history of boosting was the new finding, that the Ad-

aBoost algorithm can be represented as a functional gradient descent algorithm (Breiman,

1Note, that “base procedure” and “weak learner” are often used as equivalent terms in the boosting
literature.
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1998, 1999). This inspired Friedman et al. (2000) to transfer the idea of boosting to logistic
regression, by modifying the AdaBoost algorithm, using a base procedure that returns class
probabilities instead of labels. Friedman (2001) further improved the concept of boosting
as a gradient descent optimization technique and extended boosting methods to include
regression problems. He suggests to minimize the empirical version of the expected loss
for some specified loss function, using a steepest gradient descent approach. An overview
of robust loss functions for regression can be found in Hastie et al. (2009). Moreover,
Friedman (2001) has demonstrated, that a small step-size factor in the boosting update,
denoted by ν, can be often beneficial and almost never yields substantially worse predic-
tive performance of boosting estimates. In Bühlmann and Yu (2003) the L2-loss has been
investigated. They showed how to fit smoothing splines by boosting base learners and
introduced the idea of componentwise boosting, which may be exploited to select predic-
tors. Furthermore, they succeeded in proving an exponential dependence between the bias
and the variance of the boosted model, which explains to a certain extent that boosting
algorithms are rather resistant against overfitting. These findings represent some of the
most important results concerning theoretical properties of boosting algorithms.

Another form of boosting is likelihood-based boosting, which may be seen as an extension
of boosting based on the L2-loss (L2Boosting). In case of the logit model and binomial
likelihood Friedman et al. (2000) have proposed the LogitBoost algorithm. The more
general case of semiparametrically structured regression in the form of additive models is
considered in Tutz and Binder (2006), where all kinds of link functions and distributions
that are used in generalized additive models are covered and also variable selection is
achieved by using componentwise learners. Furthermore, penalized regression splines as
well as penalized stumps are considered as weak learners. As the so-called GAMBoost
algorithm with penalized regression splines as learners is of fundamental character for
the boosting approaches presented in this thesis, we give some more details about the
algorithm. In each boosting iteration the procedure uses a single step in Fisher scoring2

for the update, based on a single smooth component. Thus, it is necessary to decide which
of the available predictor variables should be used for the update. The straightforward
criterion that is proposed here is to link the choice of the variable to the improvement of
fit by one Fisher scoring step, which for likelihood-based models is given by the deviance.
The componentwise update has the advantage that a selection of variables is implicitly
performed by fitting simple models, containing only one predictor variable. For appropriate
stopping of the algorithm a suitable information criterion is used, which specifies the trade-
off between model complexity and goodness-of-fit. It represents an attractive alternative
to cross-validation, which especially for larger data sets becomes very time consuming.
The model complexity at boosting iteration l is given by the trace of the corresponding
approximate hat matrix Hl, which is defined in a recursive manner, consisting of all hat
matrices corresponding to earlier iterations.

2The Fisher scoring algorithm represents a variant of the Newton-Raphson method. Both methods
coincide in exponential family model settings, if the canonical link function is used.
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BoostMixed, has been proposed by Tutz and Reithinger (2007), which incorporates random
effects. The procedure is very similar to the approach of Tutz and Binder (2006), with
the main difference, that selection is based on information criteria, in contrast to measures
of deviance, thereby exhibiting superior performance in simulations. Thus, the selection
of components is performed in a way that minimizes the new lack-of-fit, including the
augmented complexity. Furthermore, an additional step for the computation of the random
effects variance components is included in the procedure.

The boosting methods presented in Chapters 2 - 4 of this thesis are based on the method-
ology of the latter two mentioned approaches, GAMBoost and BoostMixed, and extend
the concept of componentwise likelihood-based boosting to generalized linear and additive
mixed models.

Penalization

A different approach to variable selection in linear models that has received much attention
is based on penalized regression techniques. The so-called Lasso (Tibshirani, 1996) can be
seen as the break through of a new technique in regression that uses an L1-penalty on the
regression coefficients βββ = (β1, . . . , βp)

T . The basic idea is to maximize the log-likelihood
l(βββ) of a regression model while constraining the L1-norm of the parameter vector βββ, usually
excluding the intercept. This has the effect that all coefficients are shrunken towards zero
and some can be set exactly to zero. If some coefficients are set to zero, the corresponding
covariates have no effect on the dependent variable and a sparser model is obtained.

The Lasso estimate β̂ββ can be defined as the solution of the following constrained likeli-
hood optimization problem:

β̂ββ = argmax
βββ

l(βββ), subject to ||βββ||1 ≤ s, (1.1)

with s ≥ 0 and with || · ||1 denoting the L1-norm. Equivalently the Lasso estimate can be
derived by solving the penalized likelihood optimization problem

β̂ββ = argmax
βββ

(l(βββ)− λ||βββ||1) , (1.2)

with penalty parameter λ ≥ 0. The latter representation explains why this technique is
called penalized regression. Note, that both s and λ are tuning parameters of the procedure
and have to be determined, for example, by cross-validation. This can be very time-
consuming, especially in high-dimensional data settings. Thus, in problems with intricate
log-likelihood function, efficient algorithms are needed to derive solutions of equations (1.1)
or (1.2) in order to keep computation time practical.

In Section 5.1 several approaches for efficient solutions of equations (1.1) or (1.2) are
discussed. Furthermore, an overview of the manifold extensions and advancements of the
Lasso is given, whereas the use of penalization techniques for the selection of variables
in mixed models is still in the beginning. Based on the approach of Goeman (2010),

A componentwise likelihood-based boosting procedure for additive mixed models, called
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in Chapter 5 suitable L1-penalty approaches for the generalized linear mixed model are
developed, which work by combining gradient ascent optimization with the Fisher scoring
algorithm.
At this point it should be mentioned, that, following Bühlmann and Hothorn (2007),

boosting based on the L2-loss and Lasso are not equivalent in general, but can be seen
as “related”. Hastie et al. (2009) have been the first to draw an astounding connection
between L2Boosting with componentwise least squares and the Lasso. Next, Efron et al.
(2004) further concretized this connection. They showed, that their version of L2Boosting
(the so-called forward stagewise linear regression, FSLR) with infinitesimal small step-
sizes ν produces a set of solutions, which is approximately equivalent to the set of Lasso
solutions when varying the Lasso penalty parameter λ from equation (1.2). This was
achieved by representing both FSLR and Lasso as two different modifications of their
computationally efficient least angle regression (LARS) algorithm ( for generalized linear
models, see Park and Hastie, 2007). Hence, boosting and penalization represent related
alternatives for attaining regularized regression models. Both approaches are employed in
the regularization methods presented in this thesis.

Guideline through the Thesis

The main part of this thesis consists of four basic chapters, which show the favorable
qualities of regularization methods in different types of generalized mixed models. All of
the boosting techniques proposed in Chapters 2 - 4 are based on the likelihood function
and work by iterative, componentwise fitting of the residuals using weak learners. In
order to keep individual chapters selfcontained, some passages repeat themselves with only
small modifications and adjustments due to the different frameworks. Additionally, in
Chapter 5 a completely different approach is presented, which enforces variable selection
and shrinkage simultaneously by penalization of the L1-norm of the regression parameters.
In short, the single chapters may be summarized as follows:

Chapter 2: Boosting Approaches to Generalized Linear Mixed Models

Generalized linear mixed models are suitable for modeling the dependence structure
of longitudinal data and of designs with repeated measurements. However, their use
is typically restricted to few covariates, because the presence of many predictors yields
unstable estimates. We propose a componentwise likelihood-based boosting approach
which can be used in high-dimensional settings when many potentially influential
explanatory variables are present. It allows fitting generalized linear mixed models for
many covariates with implicit selection of relevant variables. For the determination
of the complexity of the resulting estimator we use information criteria. Moreover,
we can incorporate “random slopes” on linear effects, resulting in flexible generalized
linear mixed models which are appropriate in cases where a simple random intercept

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



6 1. Introduction

is unable to capture the entire variation of effects across subjects. The method is
investigated both in extensive simulation studies and in an application to a real data
example.

Chapter 3: Boosting Approaches to Ordinal Random Effects Models

A componentwise likelihood-based boosting approach for the fitting of binary and
ordinal mixed models is presented. It is based on the same principle as the boosting
approach from Chapter 2, extending it to generalized linear mixed models with or-
dinal response variables. Again, the technique works well, even if a large number of
potentially influential explanatory variables is available and conventional approaches
tend to fail. The method is investigated in simulation studies both for cumulative
and sequential models and is illustrated in three applications.

Chapter 4: Boosting Approaches to Generalized Additive Mixed Models

With the emergence of semi- and nonparametric regression the generalized linear
mixed model has been expanded to account for additive predictors. In this chapter
the concept of likelihood-based boosting is extended to generalized additive mixed
models. The procedure is constructed as a componentwise boosting method and
hence is able to perform variable selection, with the selection being restricted to addi-
tive predictors. In contrast to common procedures it can be used in high-dimensional
settings where many covariates are available, with unknown and potentially nonlinear
influence. The complexity of the resulting estimator is determined by information
criteria. Simulation studies for binary and Poisson responses as well as real data set
examples shall demonstrate the properties of the suggested approach.

Chapter 5: L1-Penalized Generalized Linear Mixed Models

As already mentioned, though generalized linear mixed models are a widely used
tool for modeling longitudinal data, their use is typically restricted to few covariates,
because the presence of many predictors yields unstable estimates. The presented
approach to the fitting of generalized linear mixed models includes an L1-penalty
term that enforces variable selection and shrinkage simultaneously. A gradient ascent
algorithm is proposed that allows to maximize the penalized log-likelihood yielding
models with reduced complexity. In contrast to common procedures it can be used in
high-dimensional settings where a large number of potentially influential explanatory
variables is available. For categorical predictors the method enforces simultaneous
selection of all the dummies that are linked to the categorical predictor. The method
is investigated in simulation studies and illustrated by use of several real data sets.

Software

For all computations in the thesis the statistical programm R (R Development Core Team,
2008 – 2011, depending on the time when the respective research was done) was used
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in combination with related packages. R-functions for the different boosting approaches
from Chapters 2 - 4 are implemented in the R add-on package GMMBoost (Groll, 2011b)
and are publicly available via CRAN (see http://www.r-project.org). The glmmLasso

function for the fitting of generalized linear mixed models using L1-penalization (Chapter
5) is implemented in the correspondent R add-on package glmmLasso (Groll, 2011a) and
is also publicly available via CRAN.
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