

Markus Pohl (Autor)

Benetzen und Dispergieren nativer und gezielt agglomerierter pyrogener oxidischer Partikel

https://cuvillier.de/de/shop/publications/2097

Copyright:

Cuvillier Verlag, Inhaberin Annette Jentzsch-Cuvillier, Nonnenstieg 8, 37075 Göttingen, Germany

Telefon: +49 (0)551 54724-0, E-Mail: info@cuvillier.de, Website: https://cuvillier.de

Inhaltsverzeichnis

Inhaltsverzeichnis

J	Einieitung	1
2	Grundlagen und Stand des Wissens	5
2.1	Gestaltung partikulärer Produkte	5
2.2	 Theoretische Beschreibung des Dispergierprozesses 2.2.1 Benetzen der Partikel 2.2.2 Dispergieren der Aggregate und Agglomerate 2.2.2.1 Mechanische Verfahren zur Dispersionsherstellung 2.2.2.2 Konzept der volumenbezogenen Energie 2.2.3 Dispersionsstabilität 	7 7 14 15 23 24
2.3	Agglomerationsverfahren 2.3.1 Agglomeration durch Sprühtrocknung 2.3.2 Sprühgefriergranulation	27 28 29
2.4	Eigenschaften von Agglomeraten 2.4.1 Porosität 2.4.2 Festigkeit	30 30 32
3	Ziel der Untersuchungen	34
4	Verwendete Stoffsysteme und Messmethoden	36
4.1	Verwendete Stoffsysteme 4.1.1 Native Pulversysteme 4.1.2 Gezielt agglomerierte Pulversysteme 4.1.3 Benetzende Flüssigkeiten 4.1.4 Herstellung der Sprühgefriergranulate	36 36 38 40 41
4.2	Bestimmung der Benetzungskinetik 3.2.1 Kegelmethode 3.2.2 Immersionstest mit Laserabstandsensor	43 43 44

ii Inhaltsverzeichnis

4.3	Porositätsmessung an Einzelagglomeraten	45
4.4	Dispergiersysteme	46
	4.4.1 Rotor-Stator-Systeme	47
	3.4.2 Ultraschall	48
	3.4.3 Hochdruckbeanspruchung	50
4.5	Partikelgrößenanalyse	53
	4.5.1 Photonenkorrelationsspektroskopie	53
	4.5.2 Laserlichtbeugung mit Erweiterung	54
	4.5.3 Ultraschalldämpfung und elektroakustische	
	Spektroskopie	56
	4.5.4 Bildanalyse zur Bestimmung von Agglomerat-	
	größenverteilungen	57
	4.5.5 Kennwerte	58
4.6	Zetapotenzial bestimmung	59
5	Ergebnisse und Diskussion	62
5.1	Experimentelle Untersuchungen zur Benetzbarkeit	62
	5.1.1 Benetzungsverhalten nativer pyrogener Nano-	
	partikel	62
	5.1.2 Benetzungsverhalten gezielt agglomerierter	
	Nanopartikel	67
	5.1.2.1 Agglomeratporosität	67
	5.1.2.2 Agglomeratgrößenverteilung	70
	5.1.2.3 Einfluss der Agglomeratgröße	71
	5.1.2.4 Einfluss der Agglomeratporosität	74
	5.1.2.5 Einfluss des Agglomerationsverfahrens	77
5.2	Experimentelle Untersuchungen zur Dispergierbarkeit	80
	5.2.1 Zeta-Potenziale	80
	5.2.2 Dispergierverhalten nativer pyrogener Nanopartikel	81
	5.2.2.1 Rotor-Stator-Systeme	81
	5.2.2.2 Ultraschallbeanspruchung	86
	5.2.2.3 Hochdruckbeanspruchung	91
	5.2.2.4 Vergleich der Dispergiersysteme	94
	5.2.2.5 Vergleich der Messverfahren zur Partikelanalyse	96
	5.2.2.6 Stabilität der Dispersionen	97

Inhaltsverzeichnis

	 5.2.3 Dispergierverhalten gezielt agglomerierter Nanopartikel 5.2.3.1 Absatzweise Beanspruchung mit Rotor-Stator-Syste 5.2.3.2 Absatzweise Beanspruchung mit Ultraschall 5.2.3.3 Kontinuierliche Ultraschallbeanspruchung 	99 m 99 101 109
8	Zusammenfassung	111
	Literatur	116
	Anhang	129
A.I	Ermittlung der Sprühparameter zur Herstellung der Sprühgefriergranulate	129
A.II	Viskositätsbestimmung an Aerosil-90-Dispersionen	130
A.III	Mehrstufige kontinuierliche Ultraschallbeanspruchung m dem Prozessor UP 200 S	it 132
A.IV	Tropfenzerkleinerung in der Hochdruckapparatur	133
A.V	Simulation der Strömung in der Wasserstrahldüse	134
A.VI	Dispergierzelle für den Ultraschallprozessor UIP 1000, absatzweiser Betrieb	137
A.VII	Dispergierzelle für den Ultraschallprozessor UIP 1000, kontinuierlicher Betrieb	139
A.VIII	Variable Dispergierzelle für den Ultraschallindustrie- prozessor UIP 4000	140
A.IX	Dispergierzelle für die Zahnkranzdispergiermaschine	141
A.X	Detaillezeichnungen der Düsenkonfigurationen	142
A.XI	Verschraubung der Wasserstrahldüse	143