Inhaltsverzeichnis

Formelzeichen und Einheiten								
Αl	bkürz	ungen		ix				
1	Einleitung							
2	? Theoretische Grundlagen							
	2.1	Perkol	ation leitfähiger Füllstoffnetzwerke	3				
		2.1.1	Perkolationsmodelle	4				
		2.1.2	Kolloidtheoretischer Ansatz	6				
			2.1.2.1 Duromer/Füllstoff als kolloidale Dispersion	6				
			2.1.2.2 Kräfte zwischen dispersen Partikeln	7				
		2.1.3	Aggregation und Koagulation	9				
	2.2	Elektr	isch induzierte Füllstoffnetzwerke	12				
		2.2.1	Elektrophorese, Dielektrophorese und Teilchendrehung	12				
		2.2.2	Kettenbildung im elektrischen Feld: Elektrorheologische Flüs-					
			sigkeiten	18				
		2.2.3	Spezielle Modellansätze zur Beschreibung elektrisch indu-					
			zierter Partikelketten	22				
			2.2.3.1 Anordnungsprozess in heterogenen Systemen: Sti-					
			mulierte Perkolation	22				
			2.2.3.2 Dynamik elektrisch induzierter Füllstoffnetzwerke	26				
3	Materialien und Methoden							
	3.1 Duroplaste							
		3.1.1	Epoxyharz Araldit LY556	33				
		3.1.2	Härter Araldit HY932	34				
		3.1.3	Härter XB3473	35				
		3.1.4	Härter HY917	35				
		3.1.5	Vinylesterharz	36				
		3.1.6	Säure-Base-Charakter, Viskosität und ionische Leitfähigkeit	36				
	3.2		offe	39				
		3.2.1	Hochleitfähigkeitsruß	39				
		3.2.2	Nanofasern	40				
		3.2.3	Nanotubes	43				
	3.3	Disper	rgierung	45				

Inhaltsverzeichnis

		3.3.1		en zur Dispergierung der Füllstoffe	46		
		3.3.2	Chemiso	che Wechselwirkung Füllstoff-Polymer	47		
	3.4	Chara	arakterisierungsmethoden				
		3.4.1	Herstell	ung und in situ Beobachtung leitfähiger Partikel-			
			netzwer	ke	49		
		3.4.2	Impeda	nzspektroskopie	51		
4	Perl	oplasten	53				
	4.1	Hochle	eitfähigke	eitsruß	54		
		4.1.1	Perkolat	tion in aminischen Systemen	54		
		4.1.2		tion im Anhydridsystem	57		
		4.1.3	Perkolat	tion im Vinylesterharzsystem	59		
		4.1.4	Zusamn	nenfassung: Rußgefüllte Duroplaste	59		
	4.2	Kohle	nstoff Na	nofasern	61		
		4.2.1	Kohlens	toff Nanofaser Dispersionen	64		
		4.2.2		erkolationsverhalten von Kohlenstoff Nanofasern .	67		
	4.3						
		4.3.1	CVD M	ulti-Wall-Nanotubes als Füllstoff	68		
			4.3.1.1	Homogene Dispersion	70		
			4.3.1.2	Clusterbildung	71		
			4.3.1.3	Makroskopisch leitfähiges Netzwerk	73		
			4.3.1.4	Perkolation in Abhängigkeit vom Aspektverhältnis	75		
			4.3.1.5	Perkolation im Anhydridsystem	77		
			4.3.1.6	Vergleich Theorie - Experiment	78		
			4.3.1.7	Zusammenfassung CVD-Nanotubes	80		
		4.3.2	ffdotierte Nanotubes	81			
			4.3.2.1	Dispersionsverhalten der stickstoffdotierten Tubes	81		
			4.3.2.2	Perkolation im AminsystemHY und im Anhydrid-			
				system	83		
			4.3.2.3	Einfluss der Härtungstemperatur auf den Perko-			
				lationsprozess	84		
			4.3.2.4	Perkolation induziert durch Scherung	85		
	4.4	Die Fi	illstoffe in	m Vergleich	90		
5	Elek	ktrisch	induziert	te Füllstoffnetzwerke	93		
	5.1	Hochle	eitfähigke	eitsruß	93		
		5.1.1	Netzwer	ke in aminischen Systemen	94		
			5.1.1.1	Bestimmung des Zetapotentials	94		
			5.1.1.2	Charakterisierung der Netzwerkstrukturen	97		
			5.1.1.3	Perkolationsdynamik elektrisch induzierter Ruß			
				Netzwerke	102		
			5.1.1.4	Temperaturverhalten leitfähiger Rußnetzwerke	103		
		5.1.2	Netzwer	ke im Anhydridsystem	106		

Inhaltsverzeichnis

Index							
Α	Lab	view			157		
7	Zusammenfassung und Ausblick7.1 Zusammenfassung						
	6.2 6.3 6.4	Konta Epoxy	ktlos elek harzsyste	etrisch induzierte Perkolation	148 149		
	6.1			biete elektrisch leitfähiger Verbundwerkstoffe			
6	Mös			ingsgebiete elektrisch leitfähiger Duroplaste	147		
	5.4			nduzierten Füllstoffnetzwerke im direkten Vergleich			
		5.3.3	Fazit: F	der Temperatur	143		
			5.3.2.1	Langzeitverhalten der Leitfähigkeit bei Variation			
		5.3.2	Sticksto	off dotierte Nanoröhrchen			
			5.3.1.3	Einfluss der Feldstärke und des Füllstoffgehaltes auf die Leitfähigkeit der Verbundwerkstoffe	138		
			5.3.1.2	Perkolationsdynamik	136		
			5.3.1.1	ĕ			
		5.3.1	CVD M	WNT	134		
	5.3 Kohlenstoff Nanoröhrchen			noröhrchen	133		
		5.2.3	Fazit: E	lektrisch induzierte Kohlenstoff Nanofaser Netzwerk	e131		
			5.2.2.2	Dynamik und Leitfähigkeiten der Netzwerke	126		
		0.2.2	5.2.2.1	In situ Analyse der Netzwerkbildung			
		5.2.2		idsystem			
			5.2.1.4	duzierten Nanofaser Netzwerke			
			5.2.1.3	Analyse der Dynamik und Leitfähigkeiten der in-	100		
			5.2.1.2	Netzwerkbildung im Wechselfeld	116		
			5.2.1.1	Netzwerkbildung im Gleichfeld			
		5.2.1	Aminsy	steme			
	5.2	Kohlei	nofasern	108			
		5.1.4		llektrisch induzierte Rußnetzwerke			
		5.1.3	Netzwei	ke im Vinylesterharzsystem	107		