X/

Claudia Spircu (Autor)
A Flexible Software Environment for the Simulation
of Test System Architectures

Claudia Spircu

A Flexible Software Environment
for the Simulation of Test System

Architectures

Cuvillier Verlag Goéttingen

https://cuvillier.de/de/shop/publications/2202

Copyright:

Cuvillier Verlag, Inhaberin Annette Jentzsch-Cuvillier, Nonnenstieg 8, 37075 Goéttingen,
Germany

Telefon: +49 (0)551 54724-0, E-Mail: info@cuvillier.de, Website: https://cuvillier.de

Chapter 1

Introduction

1.1 General Motivation

This work originated in the frame of the Monarch BMBF Project in co-operation with two
companies: SZ Testsysteme and ATMEL. As the title of the project suggests, Monarch - ”’De-
velopment and Modeling of a New ATE Architecture” (in German "Modellierung einer neuen
Testerarchitecktur)”, had as a goal the development of new concepts for a new Automatic Test
Equipment (ATE) system architecture.

A mixed signal ATE system used for testing integrated circuits
with digital and analog parts contains heterogeneous compo-
nents, such as: controllable test instruments (signal genera-
tors, signal capturers and processors), bus systems, current
and voltage sources and meters, loadboard (adaptor between
the test system and the device under test - DUT), operating
system device drivers etc (see Figure 1.1).

The reason for this project was that existent (at that time) ATE
architectures were old and weren’t developed on an evolu-
tionary basis. Therefore, the communication between differ-
ent components of an ATE system showed often bottlenecks
and the execution of a complete test program wasn’t always
finished in an optimum time. During the production test of
integrated circuits when thousands of circuits were to be tested as quickly as possible, this
was not to be desired.

Figure 1.1 An ATE system

Because of the number and complexity of the instruments and of the communication system,
the development and, much more, the evaluation of a new ATE architecture cannot be done
without previously modeling and massive simulation.

In the specifications of the Monarch Project was written that: ”the new architecture should
be developed with modern simulation techniques [...]”". Therefore it is necessary to model

2 Chapter 1. Introduction

ATE instruments to analyse interaction of single modules. The simulation modules have to be
flexible and customizable for evaluation and fine tuning”.

Another specification said: “’In between the next five years industry will demand for new
modular test systems to meet future requirements. In this project new test system architectures
will be composed, modeled and verified with a wide range of simulation procedures”.

A final simulation run with high resolution for such a complex system is not possible, even
with modern simulators and computers. Therefore, when modeling ATE architectures, seve-
ral abstraction levels must be taken into consideration. Using only detailed electrical signal
descriptions it is not possible to evaluate a complete architecture, that contains hundreds of
instruments and several bus systems. A complete architecture can be evaluated only if the
models are less refined, abstracted from the electrical level to a behavioral one, using instead
of signals the appropriate data. Therefore several abstraction levels in the modeling of the sys-
tem must be provided, dependent on the modeling goal: low level when evaluating individual
components or high level for the entire architecture. Several views of the system must also be
provided, at least a structural and a behavioral one.

1.2 ATE Modeling — Abstraction Levels and Views

As it is defined by J. Peterson, in [55], a model is a representation of what is felt to be the
important features of the object or system studied. By the manipulation of the representation,
it is hoped that new knowledge about the modeled phenomenon can be obtained without the
cost or inconvenience of manipulating the real phenomenon itself. Most usual a model is a
formal description (in a mathematical sense) of a system or parts of it.

An important characteristic of a model is that it abstracts the system, sometimes on several
levels of detail. Abstractioning means representing only properties of the system that are
important to the investigated problem. Through model refinement several properties can be
added to the model.

On the other hand, a model shows only a perspective or view of a system. Abstraction levels
are often orthogonal to views.

For modeling the hardware and the software components of a test system, several abstraction
levels and views are used.

As views, one can consider the behavioral, the structural and the physical view, whereas the
physical view is no concern of this work. For abstraction levels, two abstraction levels are
important, namely the high level and the low level.

The abstraction levels and views can be represented in a so-called Y-chart, introduced by
D. Gajski (see [25]), as shown in Figure 1.2.

The three axes represent the system perspective, on each axes the ticks represent the abstrac-
tion levels: the farthest away from the center they are in the Y-chart the more abstract.

1.3. The Simulation Levels Used 3

Structural View Behavioral View

data communication,

mstruments, delays, bottlenecks

processors, busses

electrical functionality,

relays, gates 1 1ality
signals, synchronization

instrument
cards

mainframe,
testhead

y

Physical View

Figure 1.2 Views and abstraction levels - the Y-chart
1.3 The Simulation Levels Used

As combinations of abstraction levels on different system perspectives, four simulation levels
are introduced in this work. They were shown in Figure 1.2 and will be explained in the table
below.

Sim. | Description Representation
Level
1 It is a structural high level description of the sys-
tem. On this level, the ATE is a collection of in-
struments, communication components, devices un- . I
der test (DUTs) and host computer(s). weir { myowy [I %
Problems: L= ¥
— to describe the components using adequate 1 i
properties,

— if possible, to use concepts from the object-
oriented design, mainly encapsulation and in-
heritance,

— to describe the component ports (interconnec-
tion points with other components).

Simulation on this level is a simple interconnection

check: open connections, all connections allowed etc.

Chapter 1. Introduction

It is the behavioral high level description of the sys-
tem. Here behavioral models (in form of statecharts)
are introduced for the hardware components and task
graphs are used as test program models. They con-
trol the hardware models. Communication between
components is seen as data communication.

Problems: [et J

Evaluate J

— to define models that describe the functional-
ity of the components simply enough for allow-
ing the simulation of the entire architecture but
complex enough to contain all the interesting
parts of the problem,

— to define test program models,
— to connect all the models and simulate them.

Simulation on this level is a discrete-event simu-
lation, because the models can be defined in form
of extended state machines (statecharts) that react at
events. The simulator must use these high level mod-
els, but also permit, if necessary, the connection of
lower level models, via the concept of “observers”
(see [27]). The high level models can be written in
any general programming language: C, C++ etc.

It is a behavioral low level (electrical) description of
the system. The behavioral models that are used here v
must take into consideration the electrical properties | ‘e s
and transformation of the components, must decide
the signal characteristics and constraints.

Problems:

Viow

— to define models by using mathematical equa-
tions and also finite state machines,

— synchronization problems of the used signals.

Simulation on this level is a mixed-signal analog and
digital one. Therefore the models on this level must
be described with special hardware programming lan-
guages, like for instance VHDL-AMS.

1.4. Used Hardware and Software Models 5

4 Includes low level structural modeling together with
physical aspects of the system.
Problems:

— the internal structure of the instruments,

— placement problems: were to put the instrument gy resipre
cards: in the main frame or in the testhead (see
Section 3.1).

The actual modeling on this level is no concern of this
work.

The main concern of this work is the high level structural and behavioral modeling, i.e. the
simulation levels 1 and 2, where the following simulation goals can be attained:

— getting a coarse evaluation of the execution time of a test program on a given architec-
ture, before the actual construction of the test system;

— obtaining the component load and therefore having an overview of the components that
are mostly used or the components that are not at all used; thus getting the bottlenecks
in the data communication.

In order to evaluate an architecture, key test cases for different measuring requirements must
be used: mixed-signal stimuli with complex wave forms, analysis of DUTs analog signals with
modern digital signal processing methods. A test program and a DUT must thus be also taken
into consideration when evaluating an architecture.

1.4 Used Hardware and Software Models

Orthogonal to the abstraction levels and views the models used for describing hardware and
software can be, in general, classified as follows.

1 control dominant (or state oriented)

U data flow dominant (or activity oriented)

U heterogeneous (control plus data oriented)

O time oriented

1 structure oriented

6 Chapter 1. Introduction

Some of these models are based on the Petri net model (see Appendix A). A very good
introduction to Petri nets and the modeling of systems using Petri nets is given by Peterson in
[55].

Examples of control dominant models are the finite state machines (FSMs) and the statecharts,
which are state machine extensions. They are normally used for modeling hardware behavior
or control (reactive real time systems). The statecharts are used in this work for test system
component behavioral modeling and therefore they will be explained in detail in Chapter 4.
The finite state machines can be seen as special kinds of Petri net models and therefore are
shown in Appendix A.

An example of data flow models are the data flow graphs. They are normally used for mod-
eling activities or data dependencies. Throughout this work the activities will be called tasks
and a particular acyclic kind of a data flow graph, called a simple task graph, will be used.
Because simple task graphs are used for modeling test steps, they will be presented in Chapter
2, together with concrete tasks used when testing integrated circuits. The data flow graph are
shown also in Appendix A, as being another special kind of Petri net models.

A special kind of models, which combine control and data flow, are the heterogeneous ones.
As an example of these models the so-called hierarchical task graphs are shown. They are
most adequate for modeling a test program seen as a set of tasks with dependencies between
them together with control structures such as loops or branches.

By introducing time marks on a data flow or heterogeneous model, the model can be used for
the performance analysis of the system. Such time oriented models are called time marked
graphs. The simple and hierarchical task graphs used are actually such kind of models.

A structure oriented model is used for defining the structure of the physical composition of the
system (modules and connections). Such a model will be used for representing the structural
view of a test system, as it will be shown in Chapter 3.

1.5 Motivation for the Creation of a New Software Environ-
ment - TSCE

This work has two goals:

U to define high level models for the test program and the hardware components of a test
system used when evaluating the system and

U to implement a completely new software environment for the manipulation of the intro-
duced models and evaluating an architecture.

The new software environment must allow the communication between abstraction levels and
also the simulation on the high level. The environment is called the ~7est System Component
Modeling and Simulation Environment” (TSCE) and is defined by the following concepts:

1. In order to model an architecture, individual components, including instruments and
communication, must be modeled in a structured way, using properties which help in

1.6. Overview of TSCE 7

evaluating the component characteristics. Simulation levels are connected to the com-
ponent properties. Communication between simulation levels is allowed.

2. The encapsulation and inheritance concepts from object-oriented design are used to
create a hierarchy of models. To use a model, it must be instantiated.

3. The software environment allows, in a graphical way, via a Graphical User Interface,
the component definition and instantiation and the creation of connections, thus en-
abling the building of architectures.

4. A time evaluation of a constructed architecture takes into consideration the changes
within component models, and thus behavioral models are defined and attached to the
components.

5. The architecture evaluation cannot be done without a test program and thus test program
modeling on a higher abstraction level is also realized.

6. A simulator maps the software models of the test program onto the hardware ones of
the components. On the high abstraction level, used for component modeling, the use
of a discrete-event simulator is sufficient. The output of the simulator provides the
evaluation of the execution time and the component load.

In the frame of this work a discrete-event simulator was written for the following reasons:

— the simulator had to be controlled by the test program model, that generates the events
in the system that are further processed by the models,

— the simulator needs to connect models on several (at least two) abstraction levels: the
simulation and evaluation of a complete architecture is done based on high level models
but the property values used on this level must be computed using low level models and
the concept of “observer”, as it is described by Gentner in [27],

— the simulator works with a hierarchy of models, using models that inherit properties and
behavior from other models.

1.6 Overview of TSCE

The created software environment, TSCE, is developed with object-oriented concepts and the
Unified Modeling Language. TSCE contains several packages:

types — contains the classes for defining component models with properties and
port definitions, the component models being called device types. This
module implements also the model hierarchy.

elements — contains the classes for defining instances of components, of ports and
connections between port instances.

8 Chapter 1. Introduction

graphic — is the module that contains the graphic extensions of the models and
the Graphical User Interface.
model — 1is the module for defining behavioral models of components in the form

of statecharts (extended finite state machine models).

Remark: The actions performed by the models are provided as C ac-

tion functions contained in dynamic link libraries, therefore they can

be compiled and modified separately from the TSCE main part.
program — 1s the module for defining test program models in the form of simple

and hierarchical task graphs.

simulator — implements the self written discrete-event simulator and the event
classes.
xml — is the module that contains the XML parsers for reading and saving com-

ponent models, architectures and programs from XML files.
1.7 Structure of this Work

This work is structured in the following way.

Chapter 2 presents the simple and hierarchical task graphs and illustrates how, throughout this
work, a test program is represented using these data structures. This representation allows the
modeling of a test program as tasks to be performed, with dependencies and possible control
nodes, and is used in this work to evaluate the duration of a test program.

The used structural component modeling is explained and presented in Chapter 3, Section
3.3. Here device types are introduced which, using generic properties and ports, are able to
represent an arbitrary test system component. Inheritence concepts are applied when defining
a device type, thus allowing the creation of a device type hierarchy, having as goal the inheri-
tence of properties along the hierarchy.

The use of device types via their instances, called device elements, in order to create different
test system architectures is presented also in Chapter 3, Section 3.4.

In Chapter 4 behavioral models for test system components are shown based on statecharts (fi-
nite state machine extensions). It is shown how component behavioral models can be defined
using the software environment designed, each behavioral model being attached to a device
type. Some model examples are introduced, used for general test system instruments, such as
Digitizers, Generators and DSPs, or for a Bus communication component.

Chapter 5 presents the TSCE simulation environment and the discrete-event simulator pro-
gramed together with simulation examples. Some task graphs are used and it is shown how
the simulation takes place, controlled by a task graph and using the behavioral models intro-
duced in the previous chapters.

Chapter 6 contains possible extensions of the introduced models in order to realize an auto-
matic mapping onto existent test system resources.

Conclusion and further developments are presented in Chapter 7.

Chapter 2

Test Program Modeling

2.1 Whatis a Test Program?

2.1.1 Generalities

As defined by Miegler in [48], a test program, for the test of mixed analog-digital integrated
circuits, is a textual description in the form of a program code plus signal description of all the
test steps that must be performed by an Automated Test Equipment (ATE) for a Device Under
Test (DUT).

A test step performs usually a particular measurement on a particular DUT and documents
the result. The set of all the test steps, describing all the necessary measurements, is the test
program.

Following the results of the test, a classification of the DUTs is performed, that is called
binning. The ”good” DUTs are separated from the ”bad” ones. For one DUT this can be
expressed by a PASS/FAIL variable.

The sequential arrangement of all the test steps to be performed on a DUT is called a test
sequence.

The repetition of a test sequence for all the DUTs to be measured is called a test loop.

2.1.2 Construction of a Test Step

In the following section, the construction of an individual test step will be more closely pre-
sented. The description is given by Miegler in [48] and by Beyer in [6]. A test step consists
of the following:

U definition of the used signals
The digital and analog signals used must be defined in a specific form that is required

