


Chapter 1

Introduction and Objective

1.1 Background and motivation

Many (possibly most) statistical analyses involve model selection, in a process

referred to as model building. Often, selection is an iterative process, carried out

by applying a series hypothesis tests. These are used to decide on the appropriate

complexity of the model, whether certain covariates should be excluded, whether

some of them should be transformed, whether interactions should be considered,

and so on. A variety of additional methods have been specifically developed for

model selection, both in the frequentist and the Bayesian frameworks. For an

overview of model selection criteria, one may consult the monographs by Linhart

and Zucchini (1986), McQuarrie and Tsai (1998), Burnham and Anderson (2002)

and the paper by Claeskens and Hjort (2003).

After a model has been selected, one usually proceeds with inference as if

this model had been known in advance, ignoring the fact that model has been

selected using the same data. Although it has been known for some time that

this “double use” of the data leads to invalid inference, this fact is not taken into

account in the vast majority of applications. A possible explanation is that the

issue is seldom discussed in typical Statistics courses, especially in service courses

offered to non-specialists. The problem is complex and not yet well understood;

it is not clear, even to statisticians, how to carry out valid inference following

model selection.

The bias due to not taking model selection into account is referred as selection

bias (Miller, 1990; Zucchini, 2000) or model selection bias (Chatfield, 1995). The

act of using the same data for model selection and for parameter estimation is

referred as model selection uncertainty (Hjorth, 1994). We will use the term model

selection uncertainty to refer to situations in which the true model is not known,
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where a model is selected using the data, and then the selected model is used to

draw inferences, or to reach decisions.

A known consequence of ignoring model selection uncertainty is that, in gen-

eral, the selected model appears to fit better than it does (optimism principle).

For example, the estimated variance of estimator is likely to be too small, the con-

fidence and prediction intervals are likely to be too narrow. Estimators obtained

after a selection procedure has been performed are referred as estimators-post-

selection (Hjort and Claeskens, 2003), or post-model-selection estimators (Leeb

and Pötscher, 2005).

Since the problem is due to using the data twice, one could consider splitting

the data into two sets; to use one set for model selection and the other for infer-

ence. Such a procedure has a serious drawback; it leads to a loss of information.

This is undesirable, even unacceptable, especially when the sample size is small.

The severity and seriousness of the problem of model selection uncertainty

can be appreciated by reading some of the remarks that have been written on

the subject.

• Breiman (1992), p.738: “A quiet scandal in the statistical community.”

• Chatfield (1995), p.421: “Statisticians admit this privately, but they(we)

continue to ignore the difficulties because it is not clear what else could or

should be done.”

• Pötscher (1995), p.461: “This old and nagging problem.”

• Buckland et al. (1997): “It seems surprising that more authors have not

addressed this issue. In some fields, it would seem essential that the issue

be addressed.”

• Zucchini (2000), p.58: “The objectivity of formal model selection proce-

dures and the ease with which they can be applied with increasing powerful

computers on increasing complex problems has tended to obscure the fact

that too much selection can do more harm than good. An overdose of se-

lection manifests itself in a problem called selection bias which occurs when

one uses the same data to select a model and also to carry out statistical

inference [...] The solution is still being invented.”

• Hjort and Claeskens, 2003, p.879: “There are at least two clear reasons

fewer efforts have been devoted to these questions than to the primary

ones related to finding ‘one good model’. The first is that the selection

strategies actually used by statisticians are difficult to describe accurately,
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as they involve many, partly nonformalized ingredients such as ‘looking

at residuals’ and ‘trying a suitable transformation’. The second is that

these questions of estimator-post-selection behaviour simply are harder to

formalize and analyse.”

• Efron (2004), p.640: “Classical statistics as developed in the first half of

the 20th century has two obvious deficiencies from practical applications:

an overreliance on the normal distribution and failure to account for model

selection. The first of these was dealt with in the century’s second half [...]

Model selection, the data-based choice [...] remains mostly terra incognita

as far as statistical inference is concerned.”

The above remarks summarize the motivation for the investigation described

in this thesis. Our general objective is to contribute to an improved understanding

of this problem. Our specific objectives are outlined in Section 1.3.

1.2 Related work

The literature that is relevant to this thesis can be divided into two categories:

The first is concerned with the situation in which the data has been used to

select a model and then to estimate some quantity of interest. The general aim

of that literature has been to discover the properties of the post-model-selection

estimators (PMSEs). The second category, model averaging, is about estimators

that are not based on a single selected model, but rather on a weighted average

of estimators from all the models under consideration.

In this section we briefly outline the main milestones; specific contributions

will be acknowledged in the main text.

1.2.1 Post-model-selection estimators

Bancroft (1944) investigated the bias introduced by pre-testing the regression

coefficients and the homogeneity of variance. A special case of Bancroft (1948)

is given by Mosteller (1948) where the mean square error of pre-test estimator

is found. This result was later extended by Huntsberger (1955). Sclove et al.

(1972) pointed out the undesirable properties of pre-test estimators. The mono-

graph of Judge and Bock (1978) discussed the pre-test properties in detail. Risk

properties of pre-test can also be found in Lovell (1983), Roehrig (1984), Mit-

telhammer (1984), Judge and Bock (1983), Judge and Yancey (1986), Dijkstra

(1988). These developments are summarised in Chatfield (1995), and Magnus
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and Durbin (1999). Danilov and Magnus (2004) gave the first and second mo-

ments of the pre-test estimators, and showed that the error of not reporting the

correct moment can be large. A description of the pre-test problem is also given

in Longford (2005).

Distributional properties of PMSEs are considered by Sen (1979), Sen and

Saleh (1987), Dijkstra and Veldkam, Pötscher (1991), Giles and Srivastava (1993),

Kabaila (1995,1998), Pötscher (1995), Pötscher and Novak (1998), Ahmed and

Basu (2000), Kapetanios (2001), Dukić and Peña (2002), Hjort and Claeskens

(2003), Leeb and Pötscher (2003, 2005), Bunea (2004).

1.2.2 Model averaging

Bernard (1963) mentioned model combination in the statistical literature in the

framework of studying airline passenger data. Bates and Granger (1969) studied

how to combine predictions from different forecasting models. Roberts (1965)

suggested combining the opinions of experts in which the weights are the posterior

probabilities of the models.

A formal Bayesian solution to model uncertainty dates to Leamer (1978) in

which the posterior distribution was explicitly stated. This was the starting point

for Bayesian model averaging (BMA). Madigan and Raftery (1994) introduced

Occam’s window method, to reduce the set of competing models. Draper (1995)

advocated the same Bayesian model averaging methods with the idea of model ex-

pansion. Chatfield (1995), Kass and Raftery (1995) reviewed BMA, and the cost

of ignoring model uncertainty. Raftery et al. (1997) studied BMA in the context

of linear regression models. George (1999) discussed BMA in the framework of

decision theory. Hoeting et al. (1999) described methods of implementing BMA,

and gave practical applications. Merlise and George (2004) discussed general

issues on model uncertainty.

In the classical literature, Akaike (1978) defined the concept of the likelihood

of a model and proposed that this be used to determine the weights when se-

lecting autoregressive models for time series. Leblanc and Tibshirani (1996) use

likelihood weights in the context of linear regression. Buckland et al. (1997)

proposed using Akaike weights and bootstrap weights as a method of incorporat-

ing model uncertainty. Strimmer and Rambaut (2001) used the bootstrap of the

likelihood weights, and applied these to gene trees analysis. Candolo et al. (2003)

accounted for model uncertainty using Akaike weights. Frequentist approach for

model averaging is given in Hjort and Claeskens (2003). They give a general large

sample theory for model averaging estimators, including PMSEs, together with

their limiting distributions and risk properties.
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1.3 Specific objectives

In this thesis we are mainly concerned with inference after model selection, that is,

to understand how estimators behave if estimation is preceded by model selection

based on the same data. Our objective is to examine the real effects of model

selection uncertainty, and how these effects can be corrected. To achieve this we

investigate a number of issues that seem not to have been fully investigated in

the literature:

1. The frequency (or unconditional) performance of model averaging meth-

ods, in particular Bayesian model averaging (BMA); the Bayesian nature

of Bayesian model averaging.

2. The differences and similarities between model averaging and model selec-

tion, and whether, in terms of a measure of risk, model averaging methods

are a better alternative to model selection.

3. To describe a framework that connects model averaging and model selec-

tion, both in the frequentist framework and in the Bayesian.

4. To give simple examples in which the properties of PMSEs can be derived

and compared analytically, not only under pre-test selection, but with any

selection criterion.

5. To identify the key ingredients that complicate the model selection uncer-

tainty problem, and to investigate whether the use of consistent selection

criteria “solves” the problem.

6. To assess whether any specific model selection criterion can be generally

recommended, i.e. leads to better post-model-selection estimation.

7. To investigate the extent to which Bayesian model selection can be affected

by the model selection uncertainty problem.

8. To illustrate the model uncertainty problem in the framework of parameter

estimation.

9. To assess whether bootstrap methods can be used to correct for model

selection uncertainty.
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1.4 Outline of the thesis

In Chapter 2 we consider the problem of model uncertainty. We study an ap-

proach, known as model averaging, that is intended to deal with the problem.

The idea is to avoid the use of a single model to estimate the quantity of interest;

instead one uses a weighted average of the estimates obtained using all the models

under consideration. Model averaging can be carried out either in a Bayesian or

in a frequentist setting. In this chapter we focus mainly on the former, and inves-

tigate its theoretical properties, specifically its conditional properties (given the

data), its unconditional (frequentist) properties and its predictive performance.

We argue that, regarded unconditionally, in general, it is hard to establish that

current BMA estimators are truly Bayesian estimators. Therefore, their frequen-

tist performances (e.g. admissibility, minimaxity) are likely to be unknown. We

also argue that for model averaging in general, the properties of model averaging

estimator cannot be assessed unless one assumes some underline model. How-

ever, there is uncertainty about the choice of this model and it is precisely this

uncertainty that led to model averaging or model selection. Under such an as-

sumption, one would simply use that model without applying model selection or

model averaging. The same issue arises in the case of post-model-selection esti-

mation to be discussed in Chapter 3, and also when assessing the properties of

bootstrap-after-model-selection estimator discussed in Chapter 7. We provide an

illustration of an alternative method of weighting that provides a Fully Bayesian

model averaging (FBMA) approach when the quantity of interest is parametric.

In Chapter 3 we consider the issue of model selection. As in Chapter 2, we

assume that a set of alternative models is available, but that we will select a

single model to carry out estimation. We also assume that the same data is used

both for selecting the model and for estimation. Clearly, from a statistical point

of view, this post-model-selection estimation approach is different from the model

averaging approach considered in Chapter 2. The foundation of the problem is

identified and formulated in a probability framework that allows us to investigate

it theoretically. Properties of PMSEs are described for some simple cases, and

various model selection criteria are compared. The issue of consistency in model

selection is also discussed, and the effect of sample size is investigated.

Chapters 4 and 5 are about the issue of correcting for model selection uncer-

tainty; the former discusses the problem from the frequentist point of view, and

the latter from the Bayesian. We point out that, mathematically, post-model-

selection estimation is simply a special case of model averaging, and so these two

approaches can be compared within a single framework. Model selection and

model averaging are compared, and an alternative scheme is proposed for deal-
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ing with model selection uncertainty. We define Adjusted Akaike Weights and

Adjusted Likelihood Weights. These are introduced to take model selection into

account in classical model averaging.

Chapter 5 investigates corrections for model selection uncertainty in a Bayesian

framework. Conditional on the data, there is no model selection uncertainty

problem, only model uncertainty. We point out that, if the estimators are viewed

unconditionally and if a model is selected, then the problem of model selection

uncertainty does arise. An alternative model weighting approach, which does

take the selection procedure into account, is proposed. The approach, which is

based on prior model selection probabilities, is illustrated using a simple example

involving the estimation of proportions.

In Chapter 6 we investigate model selection uncertainty in the context of

parameter estimation within a single parametric model family. This offers an

alternative interpretation to a number of well-known distributional results. We

illustrate that these can be regarded as solutions to the model selection un-

certainty problem. In particular we show that profile likelihood, and nuisance

parameter problems are interpretable in this framework.

Chapter 7 is concerned with the applicability of bootstrap methods to deal

with model selection uncertainty. It is relatively easy to apply the bootstrap to

assess the properties of PMSEs. However, by means of a concrete theoretical

example, we illustrate that the resulting estimator can be poor. We identify the

reason for this failure as the poor performance of the bootstrap in estimating

model selection probabilities.

Chapter 8 summarises the main findings of the thesis and suggests possible

extensions for future research work.




