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Chapter 1  
 

Fundamentals of Grain Boundaries 
and Triple Lines 
 
1.1 Introdution 

Real metals and alloys are never free of defects. This is a common agreement in 
the field of material science and engineering. Since materials are basically in 
the form of polycrystals in practice, classical defects such as vacancies, 
dislocations, planar boundaries, and the new ones, facets and ridges on the 
boundaries are actually the structural elements of a polycrystal.  

Grain boundaries, which separate two regions of the same crystallographic 
structure but of different orientations, are one of the most important 
microstructural elements [Gottstein 2010a]. The thermodynamics and kinetics 
of grain boundaries have been addressed frequently in the past, as they play a 
significant role in most thermo-mechanical processes and impact the material 
properties, such as strength, corrosion resistance and so on. However grain 
boundary triple junctions, i.e. the intersection of grain boundaries to form a 
contiguous arrangement of grains in a polycrystal, are often overlooked as 
being part of the connecting grain boundaries. Grain boundary triple junctions 
are 1-dimensional microstructural elements on their own with specific 
thermodynamic and kinetic properties, which require an understanding of the 
attached grain boundaries as well as advanced physical and mathematical 
description tools for their investigation and characterization. 
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1.2 Grain boundaries 
1.2.1 Grain boundary structure 
In real systems (a three-dimensional case), it needs eight parameters to 
unambiguously describe a grain boundary. Three terms are for the specific 
orientation difference between the two adjacent grains, which can be presented 
by the Euler angles (�1, �, �2), by Miller indices or by an angle-axis pair in the 
Rodrigues-Frank space [Rodrigues 1840; Frank 1988]. Two parameters are for 
the spatial orientation of the grain boundary by means of the normal to the grain 
boundary plane, i.e. the inclination plane, given by the normal unit vector n = 
(n1, n2, n3) with regard to one of the adjacent grains. In addition to the five 
macroscopic parameters referred, three microscopic parameters are required to 
describe the displacement of one crystal with respect to the other, given by the 
translational vector t = (t1, t2, t3). The intrinsic properties of a grain boundary, in 
particular the grain boundary mobility and energy, are principally a function of 
the eight parameters.  

The orientation relationship between two crystal lattices, i.e. misorientation, is 
actually a transformation, which is applied to one crystal to make both crystal 
lattices coincide. If a common origin for both crystal lattices is assumed, this 
transformation is a pure rotation of one crystal coordinate system with regard to 
the other. Hence, the easiest way to discriminate different kinds of grain 
boundaries is to present the rotation in terms of a crystallographic axis <hkl> or 
a vector [uvw] and a rotation angle �. For example, if the grain boundary plane 
is perpendicular to the rotation axis, the grain boundary is referred to as a pure 
twist grain boundary (Fig. 1.1a). In such a case the grain boundary plane is 
clearly defined, no matter what the rotation angle is. In contrast, it is called a 
pure tilt grain boundary when its rotation axis is within the grain boundary 
plane. In the case of tilt grain boundaries, there is an infinite number of possible 
grain boundary planes for a give rotation angle. If the two adjacent grains have 
a mirror symmetry, it is the simplest type of grain boundary, referred to as a 
symmetric tilt grain boundary (Fig. 1.1b). All other tilt grain boundaries are 
identified as asymmetrical tilt grain boundaries (Fig. 1.1c).  

Apart from the above classification of the grain boundaries, it is also possible to 
distinguish two different kinds of grain boundaries: low angle grain boundaries 
(LAGB) and high angle grain boundaries (HAGB), depending on the magnitude 
of the rotation angle � between adjacent grains. 
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Fig. 1.1: Relative orientation of grain boundaries and rotation axes for different 
types of grain boundaries: (a) Twist grain boundary; (b) symmetrical tilt grain 
boundary; (c) asymmetrical tilt grain boundary [Gottstein 2010a]. 

Low Angle Grain boundaries 
If the rotation angle � does not exceed 15°, it is normally assumed that the grain 
boundary is completely comprised of a periodic crystal dislocation arrangement. 
In Fig. 1.2, it is shown the configuration of a symmetric <100> low angle tilt 
grain boundary, consisting of a single set of edge dislocations with the same 
Burgers vector b. The dislocation spacing d is directly connected with the 
rotation angle � (Fig. 1.2a),  

��
��

2
sin2

d
b

   (1.1) 

The dislocation spacing d increases with decreasing rotation angle � (Fig. 1.2b).  
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Fig. 1.2: (a) Dislocation configuration of a symmetrical <100> low angle grain 
boundary with tilt angle � in a simple cubic crystal; (b) Measured and calculated 
dislocation spacing in a symmetrical low angle tilt boundary in germanium [Gottstein 
2010a]. 

In the general case, an asymmetrical tilt grain boundary can be assumed as a 
deviation from a symmetrical tilt grain boundary, which needs a new set of 
dislocations to compensate the deviation (inclination) � (Fig. 1.3). Hence, an 
asymmetrical tilt grain boundary configuration requires at least two sets of edge 
dislocations, the Burgers vectors of which are perpendicular to each other. The 
number of the new set of dislocations increases with increasing deviation. The 
dislocation spacing d1 and d2 of the first set with Burgers vectors b1 and the 
second set b2 are given by  

�
�

cos
1 1

1 �
b

d  (1.2) 
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�
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1 2

2 �
b

d   (1.3) 

By contrast, low angle twist grain boundaries require at least two sets of screw 
dislocations and mixed low angle grain boundaries are comprised by dislocation 
networks of three Burgers vector [Read 1950]. The dislocation model by Read 
and Shockley predicts exactly the energy increase with rising angle of rotation 
� for low angle grain boundary, and is supported by experimental 
measurements of grain boundary energy [Smith 1976]. 
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Fig. 1.3: Dislocation configuration of an asymmetrical low angle tilt grain boundary 
with tilt angle � and inclination � [Gottstein 2010a]. 

High Angle Grain boundaries 
The dislocation model succeeds due to the assumption that the dislocation 
spacing d is so large that the interaction between the dislocation cores is 
negligible. However, the dislocation spacing d decreases with increasing 
rotation angle � according to Eq. (1.1). For the rotation angle � >15°, the 
dislocation cores begin to overlap each other, and lose their identity as 
individual lattice defects. Therefore, grain boundaries of misorientation angle in 
excess of 15° are termed high angle grain boundaries, the structures of which 
are distinguished from low angle grain boundaries. 

A common method of the structure description of high angle grain boundaries is 
still based on the dislocation model of low angle grain boundaries. The atomic 
positions in a perfect crystal are determined by the minimum of the free energy. 
Any deviation from the defined positions will inescapably introduce a free 
energy increase. Consequently, it can be assumed that the atoms in the grain 
boundary will tend to stay in the ideal positions (low energetic positions). At 
special misorientations, there are crystallographic planes, which continue 
through the grain boundary from one crystal to the other, i.e. certain atomic 
positions in the grain boundary coincide with ideal positions of both adjacent 
crystal lattices. Such lattice points are termed coincidence sites. Since the 
orientation relationship between the adjacent grains can be described by a 
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rotation, it can be analyzed under what conditions such coincidence sites will 
occur. A typical example is the rotation of 36.87° about a <100> axis in a cubic 
lattice (Fig. 1.4a). Due to the periodicity of the crystal lattices of both grains, 
the coincidence sites are also periodic. The lattice built by the coincidence sites 
is termed the Coincidence Site Lattice (CSL).  
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Fig. 1.4: (a) Coincidence site lattice (CSL) of a 36.87° <100> (�=5) grain boundary 
in a cubic crystal lattice. Left side: grain boundary plane �  plane of the paper (tilt 
grain boundary); right side: grain boundary plane // plane of the paper (twist grain 
boundary); (b) Coincidence site lattice (CSL) and displacement shift complete lattice 
(DSC lattice) at a 36.87° <100> rotation in a cubic crystal lattice. [Gottstein 2010a]. 

Apparently the elementary cell of the CSL is larger than the elementary cell of 
the crystal lattice, the density of the CSL lattice with respect to the density of 
the crystal lattice is measured by the defined quantity � 

lattice crystal of cell  elementary of volume
CSL of cell  elementary of volume

�
    (1.4) 

The quantity � defines the similarity between the CSL and the crystal lattices. 
The smaller � is, the more ordered is the grain boundary. Grain boundaries, the 
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misorientation of which is corresponding to a high density of coincidence sites, 
are called CSL boundaries or special boundaries.  

In the case of the 36.87° <100> rotation, 5)5(
3 ��


a
aa 2

. Low angle grain 

boundaries can be characterized by �=1, since all lattice sites are coincidence 
sites except for the atoms of dislocation cores. Typical low � values with 
respect to the rotation angle/axis are listed in Table 1.1.  

Table 1.1 Table of CSL values in rotation angle � /axis <uvw>. 

<100>  <110>  <111> 
� �  � �  � � 

8.80 85  16.10 51  9.40 37 
10.39 61  20.05 33  13.20 19 
12.68 41  22.80 51  15.20 43 
14.25 65  26.57 19  16.40 49 
16.26 25  31.59 27  17.90 31 
18.92 37  38.94 9  21.78 21 
22.62. 13  44.00 57  27.79 13 
25.06 85  46.00 59  32.20 39 
25.99 89  50.47 11  28.21 7 
28.07 17  55.87 41  43.57 49 
30.51 65  58.99 33  46.82 19 
31.89 53  70.50 3  50.57 37 
36.87 5  80.60 43  60.00 3 
41.11 73  82.90 57    
42.08 97  86.60 17    
43.60 29       

Geometrically, a CSL only occurs for very special misorientations, any tiny 
deviation from the exact rotation relationship causes the long range coincidence 
lost. In the case of non-special grain boundaries, such deviations can be 
compensated by dislocations with displacement vectors which conserve the size 
of the CSL as the location of the coincidence sites is allowed to change. These 
displacement vectors define the Displacement Shift Complete lattice (DSC 
lattice), Fig. 1.4b, which is the coarsest grid that contains all lattice points of 
both crystal lattice. Dislocations containing the DSC-lattice vectors as Burgers 
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vectors are referred to as Secondary Grain Boundary Dislocations (SGBDs), in 
contrast to primary grain boundary dislocations (crystal lattice dislocations). 
Hence, a general high angle grain boundary can be treated as a deviation from 
the nearest CSL grain boundary which is compensated by secondary grain 
boundary dislocations. 

 

1.2.2 Grain boundary energy 

The grain boundary energy is sensitive to the eight parameters which describe a 
grain boundary, especially the five macroscopic parameters, i.e. the orientation 
relationship and the inclination of the grain boundary. The dependency of the 
grain boundary energy on the inclination for a constant orientation relationship 
is commonly presented in the “Wulff plot”, which reveals the positions where 
the grain boundary energy is considerably low, Fig. 1.5 [Gottstein 2001].  

The grain boundary energy is also a function of the orientation relationship 
between the two crystal lattices. An example of the grain boundary energy 
dependency on the angle of rotation of a <110> rotation axis in aluminum is 
given in Fig. 1.6 for symmetrical tilt grain boundaries. Apparently, there are 
certain orientation relationships with particularly low boundary energy, which 
correspond to more structurally ordered special grain boundaries (low � grain 
boundaries).  

The free energy of a low angle grain boundary can be calculated exactly based 
on the dislocation model. The stress field of a dislocation in an infinite periodic 
arrangement is confined to a range in the order of the dislocation spacing d. In 
the case of an edge dislocation its energy per unit length is given as: 

cd E
r
dbE �

�
�

0

ln
)1(4 	�

� 2

   (1.5) 

where 	  is the Poisson radio, �  is the shear modulus, b is the Burgers vector, 
r0�b is the radius of the dislocation core and Ec is the energy of the dislocation 
core. 

 


