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1 Introduction

Nowadays semiconductor device technology permits to fabricate devices whose size is
of a few nanometers only. In these devices the particle can no longer move freely in
all space directions and thus the description of a three–dimensional electron gas is not
adequate anymore. Consequently, van Roosbroeck’s drift–diffusion model [72] does
not properly describe the physical phenomena and a finer level of modeling has to be
used.

The Schrödinger operator is one of the fundamental tools for the understanding
and prediction of nanoscaled semiconductor devices. The one–particle Schrödinger
operators in effective–mass approximation for electrons (superscript ”−”) and holes
(superscript ”+”) are given by

H±ψ = −�2

2
∇ ·

[
(m±)−1∇ψ

]
+ V ±ψ, (1.1a)

where � is the reduced Planck constant, m± = m±(x) are the mass tensors, and
V ± are the potential energies of electron and holes, respectively. The potentials V ±

are real–valued and split up into the electrostatic potential ϕ and the heterostructure
potentials V ±

h , i.e.
V ± = V ±

h ± qϕ. (∗)
The natural space to consider the operators (1.1a) is the Hilbert space H =

L2(Ω; C), i.e. the space of complex–valued square integrable functions, where Ω ⊂ Rd,
d ≤ 3, denotes the bounded spatial domain occupied by the semiconductor device.
Depending on the physical situation, boundary conditions for the Schrödinger opera-
tor (1.1a) are imposed on the boundary of Ω. Moreover, the electrostatic potential ϕ
has to be determined by a Poisson equation

−∇ ·
(
ε ∇ϕ

)
= q

(
ND + u+ − u−) on Ω, (1.1b)

where ε = ε (x) denotes the dielectric permittivity tensor and ND the doping profile
of the semiconductor device. The Poisson equation (1.1b) is usually supplemented
by mixed boundary conditions allowing Ohmic—metal—contacts on some part of the
boundary while other parts are insulated, see [34, 69]. The densities u± on the right
hand side of the Poisson equation (1.1b) depend on the spectral properties of the
Schrödinger operators (1.1a) and given statistics. Since the Schrödinger operators
depend on the electrostatic potential, see (∗), the densities u± depend on ϕ, too.
Consequently, the Schrödinger operators (1.1a) and the Poisson equation (1.1b) are
coupled in a non–linear way. Systems of this type are called Schrödinger–Poisson
systems.

The mathematical analysis of Schrödinger–Poisson systems in the past years, fo-
cused mainly on the case of thermodynamic equilibrium [58, 59, 44, 45, 46, 22]. In ther-
modynamic equilibrium the boundary conditions for the Schrödinger operator (1.1a)
are of mixed Dirichlet Neumann type, which make the Schrödinger operators (1.1a)
selfadjoint. Let us denote these selfadjoint Schrödinger operators by H±

th. The selfad-
joint operators H±

th are regarded as Hamiltonians of the corresponding quantum system



2 1 Introduction

for electrons and holes. The statistical operators �±
th in thermodynamic equilibrium

are given as a function of the corresponding Hamiltonian, i.e.

�±
th = F± (H±

th − E±
F

)
, (1.2a)

where E±
F are the constant Fermi level characterizing the thermodynamic equilibrium

of the semiconductor under consideration. The functions F± are (reduced) equilibrium
distribution functions, like Boltzmann or Fermi–Dirac distribution functions. The
statistical operators �±

th are non–negative trace class operators. Moreover, �±
th commute

with H±
th and are therefore solutions of the corresponding stationary von Neumann

equation
[H±

th, �
±
th] = 0, (1.2b)

where [·, ·] denotes the usual commutator bracket. Non–negative trace class operators
�±

th that satisfy the stationary von Neumann equations (1.2b) are called steady states
of H±

th. The integral kernels of �±
th, denoted by �±

th(x, y), i.e.(
�±

thf
)
(x) =

∫
Ω

�±
th(x, y)f(y) dy, x ∈ Ω, for all f ∈ H = L2(Ω; C), (1.2c)

are called density matrices for electrons and holes, respectively. The particle densities
u±

th are then given by
u±

th(x) = �±
th(x, x), x ∈ Ω. (1.2d)

The Schrödinger–Poisson system constituting of a Poisson equation (1.1b), where the
densities on the right hand side are given by the expressions (1.2d), i.e. comprising
selfadjoint Schrödinger operators (1.1a) and steady states of the form (1.2a), is called
the Schrödinger–Poisson system in thermodynamic equilibrium.

In 1990 Nier [59] showed that the mapping

V � ϕ �→ −∇ ·
(
ε ∇ϕ

)
+ q u−

th[ϕ] − q u+
th[ϕ] ∈ V∗,

is a strictly monotone potential operator, see also [41]. Here V is a Sobolev space,
depending on the boundary conditions imposed on (1.1b), V∗ the corresponding dual
space and u±

th[ϕ] indicates the dependence of the densities u±
th from (1.2d) on the elec-

trostatic potential ϕ. The monotonicity implies that the Schrödinger–Poisson system
in thermodynamic equilibrium admits a unique solution ϕ, see also [22, 58, 59, 44, 45,
46, 41].

In order to describe a semiconductor device away from thermodynamic equilibrium
one has to take into account the interaction of the device with its environment e.g.
batteries at the contacts, etc. The exchange of particles of the device with the contacts
results in a current flowing through the boundary of the device domain. Therefore,
one has to consider open quantum systems. Mixed Dirichlet Neumann boundary con-
ditions for the Schrödinger equation (1.1a) cannot describe a current flow through the
boundary of the device and are thus not adequate to describe an open system. In fact
quantum systems comprising selfadjoint Schrödinger operators are always closed, see
[68, 29]. Thus, to describe open quantum systems one has to consider boundary con-
ditions for the Schrödinger operators (1.1a), which make the operators non–selfadjoint
on H = L2(Ω; C). Let us denote these non–selfadjoint operators by H±

open.
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The Schrödinger operators H±
open cannot be regarded as Hamiltonians of the quan-

tum systems in the usual sense, see [68], and thus it is not clear how to define the macro-
scopic quantities such as particle and current density for an open quantum systems.
To overcome this difficulty one assumes that the open quantum systems described by
the non–selfadjoint Schrödinger operators H±

open on the Hilbert space H = L2(Ω; C)
can be embedded into a larger closed quantum system described by selfadjoint oper-
ators K± on some Hilbert space K. Mathematically this embedding is expressed by
the following conditions:

(i) the Hilbert space K contains the Hilbert space H as a subspace, and

(ii) the following relation holds:

(H±
open − z)−1 = PH

K (K± − z)−1 � H, (1.3a)

where H±
open denotes the non–selfadjoint Schrödinger operators associated to the

open quantum system, K± are selfadjoint operators on the Hilbert space K,
PK
H denotes the orthogonal projection from K onto H, and � H indicates the

restriction to the Hilbert space H.

If the conditions (i) and (ii) hold, the the non–selfadjoint Schrödinger operators H±
open

on H are called pseudo Hamiltonians of the open quantum system and the selfadjoint
operators K± on K are called quasi Hamiltonians, see e.g. [29].

The macroscopic quantities for the open quantum system are then constructed as
follows: Let �± be steady states of K±, that is non–negative operators which commute
with K±, i.e.

[K±, �±] = 0. (1.3b)

The steady states �±
open for the open quantum system are then defined by

�±
open = PK

H�± � H, (1.3c)

which are assumed to be non–negative trace class operators on H = L2(Ω; C).
Away from equilibrium one cannot assume that the operators �± are functions of

the quasi Hamiltonians K±, see (1.2a). In fact one needs a non–equilibrium theory,
see e.g. [39], in order to determine the steady states �±. The condition (1.3b) does
not determine the steady states uniquely.

The density matrices �±
open(x, y) for the open quantum system are then given as

the integral kernels of �±
open, i.e.(

�±
openf

)
(x) =

∫
Ω

�±
open(x, y)f(y) dy, x ∈ Ω, for all f ∈ H = L2(Ω; C). (1.3d)

The densities of electrons u−
open and holes u+

open for the open systems are obtained by

u±
open(x) = �±

open(x, x), x ∈ Ω. (1.3e)

The electrostatic potential ϕ has to be determined selfconsistently by the Poisson equa-
tion (1.1b), where the densities u± on the right hand side are given by the expressions
u±

open from equation (1.3e).
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The system consisting of a Poisson equation where the densities on the right
hand side are determined by means of Schrödinger operators H±

open which are pseudo
Hamiltonians of open quantum systems are called open Schrödinger–Poisson systems.
The present thesis is devoted to this type of Schrödinger–Poisson systems in a one–
dimensional setting.

The thesis is organized as follows: First we introduce some notation. In Section 2
we introduce a general class of dissipative Schrödinger operators, which play a center
role in the analysis of open Schrödinger–Poisson systems. In Section 3 we consider the
dissipative Schrödinger–Poisson system, where the pseudo Hamiltonians of the open
quantum systems are given by maximal dissipative Schrödinger operators as intro-
duced in Section 2. In Section 4 we present the analysis of the quantum transmitting
Schrödinger–Poisson system. Here the the pseudo Hamiltonians of the open quantum
systems are given by families of maximal dissipative operators, the so called quantum
transmitting boundary families. In Section 5 we present a model which consists of an
open quantum model coupled to a classical drift–diffusion model. Moreover, we show
that the model is capable to describe the transport in a resonant tunneling structure.

Each section ends with a subsection which summarizes the results of the section
and gives an outlook on possible forthcoming research.

1.1 Notation

In the following we introduce some general notation, which we need in the sequel.
Note that a list of symbols can be found on page 143.

Numbers and sets. N denotes the natural numbers 1, 2, 3, . . .. R, C are the real
and complex numbers, respectively. The real and imaginary part of a number z ∈ C

is written as Re(z) and Im(z), respectively. We define C+
def
= {z ∈ C | Im(z) > 0}

and similarly C−
def
= {z ∈ C | Im(z) < 0}. The imaginary unit is denoted by i and the

complex conjugated for some z ∈ C is indicated by z. The characteristic function of
a set ω is denoted by χω, i.e. χω(x) = 1 if x ∈ ω and χω(x) = 0 else. The closure
of a set ω is written as clo(ω). If Σ = (a, b) ⊂ R is any interval, then we denote by

∂Σ
def
= {a, b} the boundary and by |Σ| def

= b − a the length of this interval.

Banach and Hilbert spaces. The norm of a Banach space X is denoted by ‖ · ‖X

and the adjoint space is indicated by X ∗. For vectors f, fn ∈ X , n ∈ N, we denote
by f = limn→∞ fn of fn → f , n → ∞, the convergence in the ‖ · ‖X –norm (strong
convergence). Let I be any index set and fi ∈ X , i ∈ I, given vectors. The closed
linear span of the family {fi}i∈I is denoted by clospan

i∈I
fi. If H is a Hilbert space,

then 〈·, ·〉H denotes the scalar product, where the first argument is the linear one. In
this paper a Hilbert space is always assumed to be separable. By {ej | j = 1 . . . , k},
we denote the canonical basis of the Hilbert space Ck and by Pj, j = 1, . . . , k the
corresponding projection on the subspace spanned by ej, i.e. Pj = 〈·, ej〉Ckej .
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Operators on Banach spaces. Let X , Y be Banach spaces. dom(A) denotes
the domain of an operator A : X −→ Y and its range is indicated by ran(A). The
restriction of an operator A to a subset S of dom(A) is written as A � S . Moreover,
if A is a densely defined linear operator, we denote by A∗ its adjoint operator. The
notations spec(A) and res(A) refer to the spectrum and resolvent sets of A, respectively.
The Banach space of all bounded linear operators A is denoted by B(X ; Y ), with
norm ‖ · ‖B(X ;Y ). In the special case where X = Y we simply write B(X ) and
‖·‖B(X ) instead of B(X ; X ) and ‖·‖B(X ;X ). Moreover, in this case IX is the identity
operator. For linear operators A, An : X −→ Y , n ∈ N, we denote by A = limn→∞ An,
A = s-lim

n→∞
An, and A = w-lim

n→∞
An, the (operator) norm, strong, and weak convergence

of An to A, respectively. Occasionally we also write An → A, An
s→ A, and An

w→ A,
n → ∞, for the norm, strong and weak convergence, respectively.

Operators on Hilbert spaces. Let H and K be Hilbert spaces. The trace of a
linear operator A : H −→ K , if it exists, is referred to as tr(A). If, moreover, A is
densely defined and closed, then |A| denotes the absolute value of A. By B1(H ; K )
we denote the set of all trace class operators from H to K and ‖·‖B1(H ;K ) is the corre-
sponding trace norm. The set of all Hilbert–Schmidt operator is written as B2(H ; K )
and ‖ · ‖B2(H ;K ) refers to the corresponding Hilbert–Schmidt norm. If H = K we
abbreviate B1(H ) = B1(H ; H ) and B2(H ) = B2(H ; H ). Let A : H −→ H be
a selfadjoint operator, then specac(A) and specp(A) denote the absolutely continuous
and pure point spectrum of A. The point and absolutely continuous subspaces of A
are denoted by Hp(A) and Hac(A), respectively. The projections on the corresponding
subspaces are indicated by Pp(A), Pac(A), respectively.

Lp spaces. Let Σ ⊆ R and ν be a measure. Then, we denote as usual by Lp(Σ; X ; ν),
1 ≤ p < ∞, the space of ν–measurable, p–(Bochner) integrable functions with values
in the Banach space X . L∞(Σ; X ; ν) is the corresponding set of essentially bounded
functions. If ν is the Lebesgue measure, we simply write Lp(Σ; X ), 1 < p ≤ ∞.

Space of continuous functions and Sobolev spaces. Let Σ ⊆ R be an interval
and X be a Banach space. The space of continuous functions f : Σ −→ X is
denoted as usual by C(Σ; X ) and by C∞

0 (Σ; X ) the space smooth functions with
compact support. We denote by Wr,p(Σ; X ) the usual Sobolev space of r times weak
differentiable and p–integrable (with respect to the Lebesgue measure) functions.

Let Γ ⊆ ∂Σ be a subset of the boundary. If X = R, we denote by W1,2
Γ (Σ; R)

def
=

{f ∈ W1,2(Σ; R) | f(Γ) ⊂ {0}}. If Γ = ∂Σ, then we abbreviate W1,2
0 (Σ; R) for

W1,2
Γ (Σ; R). The dual space of W1,2(Σ; R) is denoted as usual by W−1,2(Σ; R). The dual

paring between W1,2(Σ; R) and W−1,2(Σ; R) is denoted by 〈·, ·〉W1,2,W−1,2. Analogous
we write W−1,2

Γ (Σ; R), W−1,2
0 (Σ; R) for dual of W1,2

Γ (Σ; R) and W1,2
0 (Σ; R), respectively.

〈·, ·〉W1,2
Γ ,W−1,2

Γ
and 〈·, ·〉W1,2

0 ,W−1,2
0

denote the corresponding dual parings.

Embedding operators. Let Σ ⊂ R be a bounded interval and Γ ⊆ ∂Σ a subset of
the boundary. The embedding operator form L1(Σ; R) into W−1,2

Γ (Σ; R) is denoted by
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I1,Σ,Γ. Moreover, we write ι1,Σ,Γ for its norm. The embedding operator from W1,2(Σ; R)
into L∞(Σ; R) is denoted by I∞,Σ and its norm is abbreviated by ι∞,Σ. If Γ = ∂Σ, then
we abbreviate I1,Σ and ι1,Σ for I1,Σ,∂Σ and ι1,Σ,∂Σ.

Multiplication operators. Let V ∈ L∞(Σ; B(X ); ν), where Σ ⊆ R, X is some
Banach space, and ν some measure. The linear and bounded multiplication operator
induced by V on the Hilbert space L2(Σ; X ; ν) is denoted by M(V), i.e. M(V) ∈
B(L2(Σ; X ; ν)) is given by (M(V)f)(x)

def
= V(x)f(x), x ∈ Σ, f ∈ dom(M(V)) =

L2(Σ; X ; ν). Note that ‖M(V)‖B(L2(Σ;X ;ν)) = ‖V‖L∞(Σ;B(X );ν). To simplify the no-
tation, we use the following convention: If it is clear from the context, we do not
distinguish between the operator M(V) and the function V and simply write V also
for the operator M(V).

Physical constants. The reduced Planck constant is denoted as usual by �. The
(positive) elementary charge is denoted by q. Boltzmann’s constant is denoted by
kBand the constant temperature by T. The electron rest mass is denoted by m0 and
the permittivity in vacuum is indicated by ε0. The values of the constants are listed
in Table 1 and are taken from standard text books, e.g. [54, 68, 50].

Quantity Symbol Value

Boltzmann constant kB 1.38 · 10−23VAs/K
Electron rest mass m0 0.91 · 10−20kg
Elementary charge q 1.6 · 10−19As
Permittivity in vacuum ε0 8.85 · 10−14AsV−1cm−1

Reduced Planck constant � 1.05 · 10−34VAs2

Table 1: Physical constants.
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2 A class of dissipative Schrödinger operators

In this section we introduce a general class of dissipative Schrödinger operators, which
play a central role in our further considerations. The section is organized as follows:
In Subsection 2.1 we state the assumptions, define the class of maximal dissipative
Schrödinger operators, and give some properties of these operators. In Subsection 2.2
we explicitly determine the characteristic function and the selfadjoint dilation corre-
sponding to the dissipative Schrödinger operators introduced before. Additionally, we
determine the Fourier transform of the dilation. Subsection 2.3 is devoted to some
mathematical scattering theory for the selfadjoint dilation. In Subsection 2.4 we con-
sider an example of a dissipative Schrödinger operator. We close the section with some
notes.

Before defining the Schrödinger operator, which we are going to consider here, we
recall some basic definitions and theorems of dissipative operators, see [70, 29, 25].

Definition 2.1. Let A be a closed operator with domain dom(A) dense in a Hilbert
space H . A is called dissipative, if

Im (〈Af, f〉H ) ≤ 0 for every f ∈ dom(A).

A is called maximal dissipative, if it has no proper dissipative extension.
A is said to be completely non–selfadjoint, if there exists no non–zero reducing

subspace H ′ of H such that A � (dom(A) ∩ H ′) is a selfadjoint operator.

The spectrum of a dissipative operator A is contained in the lower half plane,
i.e. spec(A) ⊆ clo(C−). Moreover, the estimate ‖(A − z)−1‖B(H ) ≤ 1/Im(z), for all
z ∈ C+, holds.

An important theorem in the theory of maximal dissipative operators is the Dilation
Theorem, which assigns a selfadjoint operator to a maximal dissipative operator.

Theorem 2.2 (Dilation Theorem). Let A be a maximal dissipative operator on a
Hilbert space H . There exists a larger Hilbert space K containing H as a subspace,
i.e. H ⊆ K , and a selfadjoint operator B on K such that the following relation
holds

P K
H (B − z)−1 � H = (A − z)−1, for all z ∈ C+,

where P K
H denotes the projection from K on H . Moreover, the minimality condition

clospan
z∈C\R

(B − z)−1H = K

holds. B and K are unique up to isomorphisms. B is called the minimal selfadjoint
dilation corresponding to A.

Note that if A is selfadjoint on H , then the minimal selfadjoint dilation corre-
sponding to A is A itself.

Another important object when dealing with dissipative operators is the charac-
teristic function. Let us assume that A is a maximal dissipative operator on a Hilbert
space H . We introduce the Cayley transform CA corresponding to A by

CA
def
= (A + i)(A − i)−1. (2.1)



8 2 A class of dissipative Schrödinger operators

Since A is assumed to be maximal dissipative, we have that CA is a contraction, i.e.
‖CAf‖H ≤ ‖f‖H and 1 is not an eigenvalue of CA, see [70, Theorem IV.4.1.]. Therfore,
A = i(CA + 1)(CA − 1)−1. Note that CA is unitary, if and only if A is selfadjoint. In
what follows we will assume that A is dissipative and completely non–selfadjoint. The
defect operators DA, D′

A and the defect spaces DA, D ′
A are defined by

DA
def
= (1 − C∗

ACA)1/2 , D′
A

def
= (1 − CAC∗

A)1/2 ,

DA
def
= clo

(
ran(DA)

)
, D ′

A
def
= clo

(
ran(D′

A)
)
.

(2.2)

We define the function

ΞCA
(ξ)

def
= [−CA + ξD′

A(1 − ξC∗
A)−1DA] � DA, (2.3)

for all complex ξ for which 1− ξC∗
A is boundedly invertible, see [70, Chapter VI]. The

values of ΞCA
(ξ) are bounded operators from DA into D ′

A. ‖ΞCA
(ξ)f‖H < ‖f‖H for

all f ∈ DA and ξ ∈ D = {z ∈ C | |z| < 1}, i.e. ΞCA
is a purely contractive analytic

function on D. Moreover, ΞCA
(ξ)−1 = ΞCA

(ξ)∗ for all ξ with |ξ| = 1 and ξ ∈ res(CA).
We are now able to define the characteristic function of a maximal dissipative operator.

Definition 2.3. Let A be a maximal dissipative and completely non–selfadjoint op-
erator on a Hilbert space H . The function ΞA : clo(C−) −→ B(D ′

A, DA) defined
by

ΞA(z)
def
= ΞCA

(
z + i

z − i

)
, z ∈ clo(C−) (2.4)

is called the characteristic function of A.

By the definition of the characteristic function of A and the properties of the
function ΞCA

(ξ) introduced above, we have that ΞA(z) is a contraction for z ∈ clo(C−)
and a unitary operator for real z in the resolvent set of H , i.e.

ΞA(z)ΞA(z)∗ = ID ′
A

and ΞA(z)∗ΞA(z) = IDA
for z ∈ R ∩ res(H). (2.5)

The characteristic function of a completely non–selfadjoint operator plays a similar
role as the spectral family for a selfadjoint operator, i.e. it contains essentially all
information of the operator, see [70, Theorem VI.3.1.].

Additionally we need the definition of coinciding operator valued functions, see [70,
p. 192].

Definition 2.4. We say that two functions Θ1 : clo(C−) −→ B(D ′
1, D1), and Θ2 :

clo(C−) −→ B(D ′
2, D2) coincide, if there exist unitary operators U : D1 −→ D2 and

U ′ : D ′
1 −→ D ′

2 such that Θ2(z) = U ′Θ1(z)U−1 for all z.

2.1 Dissipative Schrödinger operator

Before defining the dissipative Schrödinger operator, let us make some general assump-
tions to which we will refer to in the sequel.


