
1 Introduction

The last decades have witnessed a rapid evolution of wireless sensing and commu-

nication systems aimed at the consumer market. The antenna is a key component

in any of these systems and the selection criteria for a commercial success include

among other things the antenna performance, size, weight, and cost.

Conventional antennas most often are parabolic reflectors. Although they are efficient

radiators and considered to be of high gain, they have large masses and due to their

curved shapes they are bulky and occupy large spaces. On the other hand, planar

printed reflectarray antennas have gained a wide popularity due to the ever-growing

trend toward system integration and miniaturization. They are advantageous in terms

of low profile, lightweight, ease of fabrication, and low cost. In this thesis printed

metallic patches on dielectric substrates either with or without backside metallization

are investigated and utilized for the design of planar reflectarrays for a wide variety

of antenna applications. The printed reflectarray surfaces can be manufactured using

simple and low cost etching processes, especially when produced in large quantities.

Figure 1.1 shows one example of the investigated configurations in this thesis.
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Figure 1.1: Example of a multilayer grounded configuration which has been inves-

tigated in this thesis.
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1 Introduction

This thesis is structured as follows:

Chapter 2 deals with the theoretical part of this work. The developed program per-

mits the determination of the scattering parameters and the Green’s function of

printed arrays of patch elements under the local periodicity approximation. Al-

though the printed patch elements may have any arbitrary shape, they are restricted

to simple rectangular ones in this thesis. The calculations are based on the Spectral

Domain Immittance Approach (SDIA) in which the configuration is transformed to

its equivalent transmission line model and the Green function can easily be calculated

analytically. According to the patch size and/or the substrate thickness, the config-

urations are analyzed to the maximum range of the reflection phase, the sensitivity

to fabrication tolerances, and the element bandwidth. In order to obtain increased

bandwidth performance, the program is extended to handle twolayer configurations

with any patch size on the first layer and the second layer as well. Furthermore, the

program is extended to handle for any angle of incidence the direct reflection (angle

of incidence = angle of reflection) and higher orders of reflection (angle of incidence 6=
angle of higher orders of reflection) and any linear polarization. Finally, to prove the

accuracy of the developed program, the characteristics of the analyzed configurations

are compared to results of some other developed programs [1,2].

Based on the calculations in chapter 2, different antenna concepts are presented in

chapter 3. The principle of a planar printed reflectarray antenna is first explained

by means of the conventional parabolic reflector antenna; since the reflection phase

angle is related to the patch size, each individual patch element can be considered

as a fixed phase shifter. In the second step, the concept of a folded reflector an-

tenna with a twist reflector – rather than a normal reflector without polarization

twisting – is discussed. The focussing of the antenna is modified by twisting the elec-

tromagnetic fields together with a polarizing grid or slot array, leading to a reduced

antenna height. The goal is the design of antennas with very low profiles. To this

end, optimizations regarding antenna height reduction are made for the folded reflec-

tor antennas. Additionally, a double and a triple folded reflector antenna with very

low profiles were developed. To improve the antenna performance (gain, bandwidth,

sidelobe level, etc.), twolayer reflector antennas are designed, investigated, and their

performances are compared to those of single layer ones. Other antenna concepts in-

clude: a 27.6GHz folded reflector antenna with an integrated quasi-optical filter for

an excellent sidelobe reduction by up to 15 dB, a low profile dual-frequency antenna

for point-to-point and point-to-multi point communication at 60GHz/900MHz (the

two antennas are integrated in a common aperture), and a multibeam antenna for
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76.5GHz with three feeds producing three beams and a total scanning range of 12◦

for mm-wave automotive radar systems.

In chapter 4, new artificially made structures so called Photonic Band Gap structures

(PBG), are investigated and combined with simple antenna elements for gain en-

hancement. These structures have periodic features and forbid the propagation of

electromagnetic waves within certain range of frequencies. However, the properties

of the structures change when using them as superstrate (cover) layers to antenna

elements; a defect mode inside the structure appears and opens a localized mode

inside the frequency gap (forbidden band) of the structure. At this frequency the

directivity of an antenna element in combination with such a structure is greatly

enhanced. An antenna of this kind with a low profile is proposed and verified in the

Ka-band frequency range.
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2 Theoretical backgrounds

The theoretical part of this work determines the characteristics of electromagnetic

fields (reflection, scattering, diffraction, etc.) of plane waves on plane configurations

consisting of single layer or multilayer printed arrays of metallic patch elements on

dielectric substrates.

Different approaches can be applied to solve the problem of scattering. When the

dimensions of the radiating object are very large compared to the wavelength, ge-

ometrical optic rules(GO; direct, reflected and refracted rays) [3] can be applied.

Optical as well as microwave problems can be solved by this method, for example,

determining the contours of a parabolic reflector antenna. If the property of the ob-

ject is taken into account then the theory of diffraction can be applied [4, 5].

On the other hand, if the dimensions of the radiating object are near a wavelength,

then a simple GO method cannot be applied anymore. A full wave approach has

to be applied for solving the problem. In this case, the equations have to be solved

under all boundary conditions. The problem can either be solved in the time or the

frequency domain.

One of these approaches is the Finite Difference Time Domain method (FDTD) [6–8].

The method is formulated by discretizing Maxwell’s differential equations over a finite

volume with respect to the original Cartesian coordinates in time and space. The

derivatives are then transformed into difference approximations. Although FDTD

can model complex structures inside an enclosure with suitable boundary conditions,

it often requires considerable amount of computing time and memory; certain precal-

culations have to be taken into account when the method is applied on an open-region

problem in which the region is truncated to a finite size.

Another approach is called the Mode Matching method (MM) [9,10], which is a pow-

erful method for analyzing waveguides with variable cross-sections. In [11], the MM
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2 Theoretical backgrounds

method is applied to infinitely extended periodic arrays of printed structures. The

analysis can be simplified by considering one single unit cell parallel-plate waveguide

and applying the appropriate periodic boundary conditions. The analyzed structures,

however, have to be shielded with electric and magnetic walls. A further restriction

to the method is that it can handle only the case of a normal incident wave to the

periodic structures.

The Spectral Domain Approach (SDA) [10] is an efficient method for solving the

scattering problem of configurations composed of printed metallic structures and di-

electric layers. The method is formulated by describing the electric field through an

integral equation [12] of induced current distribution on the printed metallic struc-

tures and the Green function (the Green function explains the relation between the

current and the electric field). This integral equation is then solved in the spectral

domain after applying a Fourier transformation for one, two, or three axes of thin

conductors. Through this transformation the Green’s function is especially simpli-

fied because the convolution integral in the space domain is transformed to a simple

multiplication in the spectral domain.

By applying the Method of Moment (MoM), which is a popular technique for dis-

cretizing a continuous operator equation, the integral equation is then converted into

a matrix form. This procedure leads to an analytical solution of the problem.

Plane configurations, either open or closed on the top of the layers, are very suitable to

be solved the SDA. The method permits the calculation of the scattering parameter

for incident plane waves, which are either normal incident or oblique incident to the

structures.

2.1 Spectral Domain Approach for multilayer

configurations

The Spectral Domain approach (SDA) is especially suited for solving the scattering

of a plane wave from single and multilayer structures. Figure 2.1 shows an example

of a twolayer configuration that will be investigated in this work, however, some

restrictions have been applied to the configuration in order to simplify the method

of solution:
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2.1 Spectral Domain Approach for multilayer configurations
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Figure 2.1: Exploded view of a multilayer grounded configuration consisting of two

arrays of periodic patch elements printed on the top of each dielectric

substrate.

• Perfect conductors. As a result, ohmic losses on conducting areas are negligible.

• The conducting layers are infinitely thin. As a result only tangential currents

on a conducting area have to be considered.

• The dielectric layers of a configuration are infinitely expanded, homogeneous,

and isotropic.

• The array of microstrip-patch elements is periodic and infinitely expanded.

In this work the scattering problem will be expressed as an excitation problem; the

patch elements have to be illuminated by an electromagnetic field that is a plane

wave. MoM will then be applied to transform the scattering problem into a linear

set of equations; the current density function is then expressed through a set of known

basis current functions with unknown coefficients. Once the coefficients are known,

the scattering parameters can easily be found. Since the arrays of patches are periodic

and illuminated by a plane wave, the Floquet’s theorem [13] can be applied: on the

one hand, the current density functions for the whole structures can be represented

through a unit cell (elementary cell), with the consequence that the current density

function has to be evaluated for only the unit cell and hence, the system of equations

is minimized; on the other hand, the reaction integrals (the scalar product of the

basis and test functions, together with the Green’s function used in this work, lead

to two-dimensional integrals) are reduced to a two-dimensional summation, and the

numerical effort is further reduced.
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2 Theoretical backgrounds

However, if the arrays of patches are quasi-periodic, then the Floquet theorem can-

not be applied anymore and the current density functions have to be evaluated for

each element of the array, leading to enormous computation efforts. In [14] a mixed

integration method for an efficient approach for solving the reaction integrals in spec-

tral domain is presented; the integrand is partly evaluated in Cartesian coordinates

wherever possible and the other part of the integrand which is highly oscillating is

evaluated in polar coordinates by Filon’s method [15]. This leads to a drastic reduc-

tion in the calculations. The remaining part of the integral, the part in the vicinity

to the poles, is evaluated in a conventional way using the residual theorem.

2.1.1 Integral equations in space and spectral domain

To specify the electric and magnetic fields of a scattering problem, the relationship

between electric and magnetic fields, respectively, and the current density functions

can be expressed through integral equations [10]

~E(x,y,z) =

∫∫∫

V ′

{
↔

GE,J(x,y,z,x′,y′,z′) ~J(x,y,z,x′,y′,z′)

+
↔

GE,M(x,y,z,x′,y′,z′) ~M(x,y,z,x′,y′,z′)
}

dV ′ ,

~H(x,y,z) =

∫∫∫

V ′

{
↔

GH,J(x,y,z,x′,y′,z′) ~J(x,y,z,x′,y′,z′)

+
↔

GH,M(x,y,z,x′,y′,z′) ~M(x,y,z,x′,y′,z′)
}

dV ′ . (2.1)

~E and ~H are the electric and magnetic fields, ~J and ~M are the electric and magnetic

current densities, respectively, and
↔

GE,J ,
↔

GE,M ,
↔

GH,J , and
↔

GH,J are the Green’s

functions. Since the metallized areas have been assumed to be of zero thickness in

this work, only tangential currents have to be considered. As a result, the three-

dimensional volume integral will be reduced to a two-dimensional integral over the

area of the metallized structures along the x-axis and the y-axis. Further on, magnetic

currents on the metallized structures do not exist. From these two considerations it

follows that the two equations in (2.1) can be simply reduced to

~E(x,y) =

∫∫

A′

{
↔

ZE,J(x,y,x′,y′) ~J(x,y,x′,y′)
}

dA′ ,
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