Chapter 1

Introduction

Although Polarization Mode Dispersion (PMD) in optical fibers has been investigated
since the late 70s, it attracted serious attention since approximately 1997 due to the
commercial advent of 10 Gbit/s optical transmission systems. After tackling fiber impair-
ments in optical WDM systems such as chromatic dispersion and non-linear effects, the
remaining impairments caused by PMD still pose an ultimate limit for optical high-speed
transmission.

The main reason for the difficulties in compensating PMD-induced distortions probably
is that PMD changes statistically with time at different time scales. Therefore, unlike
chromatic dispersion, PMD has to be compensated dynamically, e.g. by using an active
control circuitry. Hence, the main goal of compensating PMD is not only to find the
optimal compensator settings but also to keep track of this optimum according to the
temporal fluctuations of the transmission link. This gives rise to numerous questions
regarding response time, reliability, complexity and cost of such a solution.

Key parameter of a PMD-disturbed fiber link is the so-called differential group delay
(DGD). The DGD defines the delay difference between two orthogonal polarization states

Figure 1.1: The effect of PMD: A propagating signal splits up into two components traveling at different
group velocities. At the fiber output they are separated by the differential group delay (DGD). The PMD
compensator delays the faster component by the appropriate amount to recover the original signal.
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of a birefringent fiber. If a fiber’s DGD stays significantly below the duration of a single bit,
the PMD-induced impairments can be neglected. However, upcoming 40 Gbit /s systems
and particularly OTDM systems with bit rates of 160 Gbit/s (here the bit duration is less
than 6.25 ps) will be severely disturbed by the DGD levels of common deployed fibers.
At these bit rates, it will hence be unavoidable to actively counteract PMD-induced
impairments since the common approach, namely selecting a low-PMD fiber, or inserting
a regenerator will not always be an option.

PMD is a consequence of fiber birefringence mainly caused by mechanical stress and
elliptical core profile of the waveguide. Due to the cabling and deploying process the
orientation of the waveguide as well as the mechanical stress varies randomly along the
fiber link. In order to describe this stochastic behavior the so-called waveplate model is
commonly used to investigate the properties of real fiber links. The main approach of
the waveplate model is to divide the fiber into several randomly concatenated linearly
birefringent elements (i.e. waveplates).

Considering a single waveplate, a polarized signal propagating through such a (linearly
birefringent) element is split into its two components coinciding with the element’s bire-
fringent axes. These two components are traveling at different propagating speeds. Thus,
a single waveplate can cause two-path propagation and therefore may induce inter-symbol
interference if the time delay between the two signal components (i.e. the DGD) is large
enough. In the waveplate model, these two components pass the second waveplate, which
has a different orientation compared to the first. Thus, the two components decompose
into four signals. These four signals, again, are divided into eight signals when passing the
third waveplate and so forth. Having this model in mind, PMD can be interpreted as a
problem of multipath propagation. As explained in the next chapters, the complex model
of concatenated waveplates can be simplified by modeling a fiber as a (single) birefringent
element whose DGD and birefringent axes (the so-called Principal States of Polarization,
PSPs) are wavelength dependent. Hence, compensating PMD means to compensate the
DGD of the system at each signal wavelength. This thesis presents different approaches
for optically compensating PMD and discusses the prospects of the proposed solutions.

Structure of this Work

The main objective of this work was to investigate different approaches of optical PMD
compensation in theory and in practice. The different PMD compensators described in
this thesis all consist of the following building blocks (see Fig. 1.2):

e Polarization Controller (PC)

e PMD Equalizer

e Error Signal Detector
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Figure 1.2: Commonly used setup for compensating PMD.
e Control Unit

The basic concept of compensating the fiber’s PMD is to add a controlled amount of
birefringence produced by a PMD equalizer. Ideally, this equalizer is tuned to exhibit the
same amount of DGD as the transmission link, and the polarization controller is adjusted
in a way that the faster signal component is delayed with respect to the slower signal
component.

This work is divided into the following main topics and addresses all of the abovementioned
building blocks:

e Chapters 2 and 3 explain basics about PMD in optical communication systems. The
central terms first-order/second-order PMD as well as the Principal States model
are introduced and the PMD tolerance of different optical communication systems
is investigated.

e Chapters 4 and 5 focus on technologies for measuring polarization and PMD in opti-
cal fibers. Experimental work is presented applying polarimetric and interferometric
approaches to measure PMD with high accuracy.

e Chapter 6 focuses on the compensation of PMD. This includes implementation of
different error detectors based on polarimetric detection as well as different im-
plementations of PMD equalizers. All presented components are demonstrated in
compensation experiments conducted in collaboration with the Fraunhofer Institut
fiir Nachrichtentechnik, Heinrich-Hertz-Institut.
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Chapter 2

Representation of Polarized Optical
Signals

2.1 Jones Representation

The Jones and Stokes representations are two established ways for describing polariza-
tion effects in optical systems. Particularly in single-mode fiber-optic systems, the Jones
formalism can be seen as a vectorized form of the system theory known from electrical
systems. The following sections introduce the basics of the Jones representation. The
Stokes representation is explained in section 2.2.

2.1.1 Optical Signals in Jones Space

Physically an optical signal is described by the amplitude and direction of the electrical
field vector at a certain position and time (p denotes a unity vector in three-dimensional
space):

—

E(t,x,y,2) = E(t,x,y,2) - p(t,z,y, 2) (2.1)

For plane optical waves propagating in z-direction, the z-component of the electrical field
disappears and just the x- and y-components are remaining. The electrical field vector at
a position z can then be written as follows:

) p() ] [ B
E(t) = B()-5) = B(t) - | () | = | Ey(1) (2.2
0 0

Note that E,(t) and E,(t) are non-complex scalar electrical signals. The optical signal
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can also be represented in Fourier space:

E,(v)
E(w) = | E,) (23)
0

This representation implies that the resulting electrical field can be formed by the super-
position of an x-polarized component and an y-polarized component. The Jones formalism
generalizes this implication and forms the electrical field out of two orthogonally polarized
components each of which are described by its Fourier transform J,(w) and J, (w). The
polarization of these components is not necessarily identical to the axes of the physical
coordinate system and can be described by the two base polarization modes €,(z,y) and
éy(r,y). J,(w) and J (w) are the elements of the Jones vector. It is often useful to
transform this formalism to the time domain:

i)~ | LW o T — | L0
1) { J,(w) } ) { Jy(t) } (2.4)
Ew) = J(w) &+J,(w) & oo Elt) = J(t) &+ J,t)-¢é

—

In this general definition, J(w) describes an arbitrary optical signal. This can be any kind
of modulated data signal but also a monochromatic CW signal. For the latter case the
Jones representation is given by!:

- Jr 0 (w+wo) +J, -0 (w—wp) - |.J,| cos (wot + arg J,)
= — ewlt) =
J (W) gy 0 (w+wo) +J, -6 (w— wy) = Jal?) ‘iy‘cos (wot—l—argiy)
(2.5)

Note that the spectral representation is the Fourier transform of a non-complex signal.
Thus the negative spectral components are the conjugate of the positive spectral compo-
nents. Since the negative spectral components do not contain additional information, it
is often suitable just to consider the analytical signal which eliminates negative spectral
components?:

+

I

(@) = 3dw) — 51 {Jw)} 2.0

For the monochromatic signal this equates to:

L= | gt | e 2w 7 ] 27

1§ (z) denotes the Dirac function
2H {.} denotes the Hilbert transform.
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Obviously this signal is entirely defined by its frequency and the complex amplitudes J,
and J,. Therefore, Jones vectors describing monochromatic signals are often written as

> J

L= 2.5)
Iy

To treat this simplification in a more systematic way, one can adopt the equivalent

baseband representation known from modulation theory. This representation moves a

bandwidth-limited signal modulated onto a carrier with the frequency wy into the base-

band:

-+ -+ .
=J

Ipp(w) (wtwo) oo Jyp(t)=J () e =" (2.9)

Using the aforementioned calculus, a polarized amplitude-modulated signal (modulating
signal: m(t)), as it is often used in optical communication, can be represented as follows:

[ |J,| cos (wot + arg J,.)

J(t) = m(t)- 12 cos (st + arg ) (2.10)
I = m) j} (2.11)
Topl) = m(t)- j} 212

e Typle) = )| 7| (213

For monochromatic signals m(t) equals 1 and the equivalent baseband signal equates to:

Topeul®) = | 5 | om0 Tpte) = | 5 |50 (214)

=Y =Y

An optical signal is often received using a photodiode. This receiver is known as envelope
detector since its output is proportional to the squared envelope of the electrical field.
This can be easily expressed by means of the analytical signal or equivalent baseband
signal:

N I OTREON
J, (t)’ ‘2 = L, ()L ()L, (1)L, (1) ) (2.15)

[ Zoky O = Lopa®dpbs O+ Lok, (O dsp, )

It =

= [ Lsha(®

o)+
‘2
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2.1.2 Optical Systems in Jones Space

In the Jones representation an optical system is given by its Jones matriz. The Jones
matrix comprises four elements describing the coupling between the two base polarization
modes:

J(w) = I (W) Jyp(w)

| ) ) (2.16)

The Jones matrix is the counterpart to the transfer function in electrical signal theory.
Each of the elements are complex scalar transfer functions in the Fourier sense. An optical
signal passing through an optical system can then be described by a simple matrix/vector
multiplication:

- -

Lour(w) = I(w) - Ly (W) (2.17)

The concatenation of two optical systems given by J;(w) and J,(w) can be described by
a matrix multiplication:

J(w) = Js(w) - I, (w) (2.18)

Note that since the matrix multiplication is not commutative, reordering the partial sys-
tems changes the result.

The formalism also holds for analytical systems:

15w = 3@ - jzH W) (2.19)
Jop@) = JW)- T ) (2.20)
Jo@) = 31w g, ) (2.21)

The Jones matrix has to be transformed to the equivalent baseband representation when
applied to baseband Jones vectors:

Jpp(w) = I (w+w) (2.22)
Tprou®@) = Ipp(@) - Tppm() (2.23)

In systems without polarization dependent loss (PDL) the Jones matrix can be split into
a common phase term and a unitary matrix:
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Jw) =T pe) L) = | B 2:20)

In that case, J ;;(w) is a complex rotation matrix and the inverse is given by J 7} (w) =
JTU* (w). If J ;; is not a function of w the system is referred to as polarization transformer.

2.2 Stokes Representation

An alternative way for describing polarization effects in optical systems is the Stokes
representation. In many cases the Stokes representation gives more insight into evolution
of a signal’s polarization propagating through a system.

2.2.1 Monochromatic Optical Signals in Stokes Space

The Stokes calculus was invented to describe the polarization property of light. It uses
four-element vectors for expressing this property of an optical signal. The elements of these
vectors are called Stokes parameters (Sp..53) and are originally defined by the intensities
of a signal after passing through differently oriented polarizers:

So I

= def | Sh Iy — Iy

S = = 2.25
So Iigs — 1 45 (2.25)
SS [lcirc - [TCiTC

Sp corresponds to the signal intensity. S is the intensity difference between 0° and 90° lin-
ear polarization. Ss is the intensity difference between 4+45° and —45° linear polarization.
Ss is the intensity difference between left-handed and right-handed circular polarization
(measured through a quarter-waveplate and a polarizer). This definition is applicable
for monochromatic signals in the same way as for broadband signals. The application
to broadband signals (e.g. modulated data signals) often causes confusion and will be
discussed in the next section. In the following paragraphs I will focus only on the Stokes
calculus for monochromatic signals.

The Stokes vector can be expressed by means of the Jones vector:

[\

L+
S AR L N (2:26)
Lo +3d,| = 3L+ |
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A Stokes vector can be converted to the Jones representation using the following relation-
ship (note that absolute phase information is lost):

1 1
¢ = arg (§Sg+j§sg> (2.27)

V %SO + %Sl etiof (2.28)
JLSy — 1y e99/2

In many cases absolute intensities are not of interest and the normalized Stokes vectors

I
[

are used:

Caer 1 Si S1
=< S | = s (2.29)
So g
3 53

Since Sy equals v/S; + Sy + S5 for monochromatic signals, the normalized Stokes vectors
are three-element unity vectors. If interpreted as vectors pointing into three-dimensional
cartesian space, these vectors form a spherical surface, called Poincaré sphere. Hence, the
polarization of a monochromatic signal can also be expressed as a point on the surface of
the Poincaré sphere.

2.2.2 State of Polarization
The polarization of a monochromatic optical signal is commonly referred to as state of
polarization (SOP). The SOP can either be expressed using Jones vectors or Stokes vectors.

In Jones space the SOP can be expressed by the relationship between the two Jones vector
elements, that is power distribution y and relative phase ¢:

X = arctan (’ly| /1.]) ¢ = arg(J, - J) (2.30)

The corresponding normalized Jones vector is given by

.y

sin(y) - e72¢

_ [ cos(x) - eﬁl%qs ] (2.31)

In Stokes space the SOP is fully described by the normalized Stokes vector 5. In addition
to that, the Stokes vector S includes signal power which is not a polarization property.



