Modellierung und Simulation der Synthese von Nanopartikeln in der Gasphase

Untersuchungen zur Wechselwirkung von Koagulation und Koaleszenz

Von der Fakultät für Ingenieurwissenschaften, Abteilung Maschinenbau der Universität Duisburg-Essen zur Erlangung des akademischen Grades

DOKTOR-INGENIEURIN

genehmigte Dissertation

von

Bettina Giesen aus Oberhausen

Referent: Prof. Dr.-Ing. Paul Roth Korreferent: Prof. Dr. rer. mat. Markus Winterer Tag der mündlichen Prüfung: 18. Oktober 2005

Bibliografische Information Der Deutschen Bibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über <u>http://dnb.ddb.de</u> abrufbar.

1. Aufl. - Göttingen : Cuvillier, 2006 Zugl.: Duisburg-Essen, Univ., Diss., 2005 ISBN 3-86537-726-2

© CUVILLIER VERLAG, Göttingen 2006 Nonnenstieg 8, 37075 Göttingen Telefon: 0551-54724-0 Telefax: 0551-54724-21 www.cuvillier.de

Alle Rechte vorbehalten. Ohne ausdrückliche Genehmigung des Verlages ist es nicht gestattet, das Buch oder Teile daraus auf fotomechanischem Weg (Fotokopie, Mikrokopie) zu vervielfältigen. 1. Auflage, 2006 Gedruckt auf säurefreiem Papier

ISBN 3-86537-726-2

Die vorliegende Dissertation entstand während meiner Tätigkeit als wissenschaftliche Assistentin am Institut für Verbrennung und Gasdynamik der Universität Duisburg-Essen. Diese wurde wesentlich durch den Sonderforschungsbereich 445 "Nano-Partikel aus der Gasphase: Entstehung, Struktur, Eigenschaften" und den Verbund "Vermos: Modellbildung und Simulation in der Produktionslinie chemischer Produkte" unterstützt.

Mein besonderer Dank gilt meinem Doktorvater, Herrn Prof. Dr.-Ing. Paul Roth, für die Themenstellung und das stete Interesse, mit dem er den Fortgang der Arbeit verfolgt und gefördert hat. Seine Erfahrung und sein Engagement waren mir eine große Unterstützung.

Herrn Prof. Dr. rer. nat. Markus Winterer danke ich herzlich für die Übernahme des Korrereferates.

Nicht zuletzt möchte ich allen Freunden, Mitarbeitern und Studenten im Institut für Verbrennung und Gasdynamik danken. Sie alle haben durch ihre freundschaftliche Zusammenarbeit wesentlich zum Gelingen dieser Arbeit beigetragen.

Duisburg im September 2005

Inhaltsverzeichnis

	Nomenklatur					
1	Einl	eitung				
2	Grundlagen: Partikelerzeugung in der Gasphase					
	2.1	2.1 Theorie der Partikelbildung und des Partikelwachstums				
	2.2	Modelle zur Beschreibung von Partikelpopulationen				
	2.3	Entwickeltes Partikelmodell				
	2.4	Modellierung der Gasphase				
	2.5	Umsetzung im Strömungslöser Fluent				
3	Synt	Synthese von Silizium-Nanopartikeln aus Silan				
	3.1	Simulation eines wandbeheizten Rohrreaktors				
	3.2	Simulation eines Mikrowellenreaktors und Vergleich mit Experimenten . 5				
		3.2.1 Beschreibung der Experimente	55			
		3.2.2 Modellierung von Gas und Partikelphase	57			
		3.2.3 Ergebnisse von Modellierung und Experiment				
4	Synt	these von Eisen-Nanopartikeln aus Eisenpentacarbonyl	64			
	4.1	Beschreibung der Experimente				
	4.2	Modellierung von Gas- und Partikelphase				
	4.3	Ergebnisse von Modellierung und Experiment am Reaktoraustritt 7				

5 Zusammemassung 67	5	07			
5 Zusammentassung 8	5	87			
		4.4 Weiterführende Ergebnisse der Modellierung			
4.4 Weiterführende Ergebnisse der Modellierung 82			4.3.2		13
4.4 Weiterführende Ergebnisse der Modellierung		4.3.2 Erweiterung des Sintermodells in den Nanometerbereich			75
 4.3.2 Erweiterung des Sintermodells in den Nanometerbereich 75 4.4 Weiterführende Ergebnisse der Modellierung		4.3.1 Bulk-Sintermodell			73

Nomenklatur

Symbol	Einheit	Bedeutung
a, \bar{a}	$[m^2]$	Oberfläche
a_{sph}	$[m^2]$	Oberfläche der volumengleichen Kugel
A	[1/m]	Gesamtoberfläche der Partikel pro Volumeneinheit
A_{min}	[1/m]	minimale Gesamtoberfläche der Partikel pro Volumenein-
		heit
В	[1]	Konstante
С	$[mol/m^3]$	Konzentration
d	[m]	Durchmesser
$d_{pp,min}$	[m]	Parameter des Eisen-Sintermodells, unterhalb dieses
		Durchmessers wird instantane Koaleszenz angenommen
d_0	[m]	Durchmesser bei dem alle Atome eines Partikels auf der
		Oberfläche liegen
D	$[m^2/s]$	Diffusionskoeffizient
D_s	[1]	Oberflächen–Fraktale Dimension
E	[1]	Konstante
E	[J/mol]	Aktivierungsenergie
\vec{f}_{FL}	2	Flussfunktion der "user defined scalar" in Fluent
J	$[kg/m^3s]$	Nukleationsrate
l	[m]	mittlere freie Weglänge
k	[1]	Anzahl der Sinterschritte eines Agglomerates
k	[1/s]	Reaktionskoeffizient
k_B	[J/K]	Boltzman Konstante
Kn	[1]	Knudsen Zahl
m	[kg]	Masse
m	[1]	Anzahl der Primärpartikeln, die in einem Schritt sintern
M_k	$[m^{3(k-1)}]$	k-tes Moment der Partikelvolumenverteilung
n_{pp}	[1]	gemittelte Anzahl der Primärpartikel in einem Agglomerat

Symbol	Einheit	Bedeutung
\vec{n}	[1]	Normalenvektor
N.	$[m^{-3}]$	Partikelanzahlkonzentration
N(n)	$[11] [1/m^6]$	Partikelyolumenyerteilung
N(v a)	$[1/m^8]$	zweidimensionale Partikelverteilungsfunktion in Volumen
(v_p, u_p)	[1/111]	und Oberfläche
N_{xy}	$[1/m^{3}s]$	Anzahl der Stöße von Partikeln mit Volumen $v_{p,x}$ und $v_{p,y}$
p	[Pa]	Druck
p_s	[Pa]	Sattdampfdruck über einer ebenen Oberfläche
p_d	[Pa]	Sattdampfdruck über einer gekrümmten Oberfläche mit
•		Durchmesser d
P_k	$[m^{3(k-1)}/s]$	Kollisionsintegral des k-ten Momentes
P_{MW}	[W]	Leistung der Mikrowelle
R	[J/molK]	allgemeine Gaskonstante
R	[mol/m ³ s]	Reaktionsrate
s	[1]	Kollisionsfaktor
s^*	[1]	Zugänglichkeit der Oberfläche eines Partikels
S	[1]	Übersättigung
S_{FL}	2	Quellterm der "user defined scalars" in Fluent
T	[K]	Temperatur
T_m	[K]	Schmelztemperatur
\vec{u}_G	[m/s]	Relativgeschwindigkeit der Gasphase
v, \bar{v}	$[m^3]$	Volumen
ĩ	$[m^3]$	mittleres Volumen
v_{ea}	$[m^3]$	Volumen einer Kugel mit derselben zugänglichen Ober-
eq	LJ	fläche wie ein mittleres Agglomerat
v_a	$[m^3]$	geometrischer Mittelwert des Partikelvolumens
w	[m]	Länge der Korngrenze
\vec{w}	[m/s]	Geschwindigkeit
\vec{w}_{n}	[m/s]	massengemittelte Geschwindigkeit der Partikel
\overline{V}_{MW}	$[m^3]$	Volumen in das die Mikrowellen eingekoppelt werden
x	[m]	axiale Koordinate des simulierten Reaktors
α	[1]	Maß für die Anzahl von Primärpartikeln auf der Oberfläche
		eines Agglomerates
α_{msd}	[1]	Verhältnis der mittleren Auslenkung der Atome an der
		Oberfläche und im Innern eines Partikels
β	$[m^3/s]$	Kollisionskoeffizient
	r /~1	

Symbol	Einheit	Bedeutung
γ	$[J/m^2]$	Oberflächenspannung
δ	1	Dirac Funktion
δ	[m]	Schichtdicke
η	$[m^3/s]$	Koagulationskoeffizient
μ	[Pas]	dynamische Viskosität der Gasphase
ξ	$[m^3/s]$	Koagulationskoeffizient
ϕ	2	skalare Größe
ρ	$[kg/m^3]$	Dichte
σ	[1]	Geometrische Standardabweichung
$ au_f$	[s]	Charakteristische Sinterzeit
$ au_c$	[s]	Charakteristische Koagulationszeit
Ω	$[m^3/mol]$	Molares Volumen der diffundierenden Spezies
Θ		Heavyside Funktion
Indizes		
a_p		Partikel mit Oberfläche a_p
$\overset{'}{C}$		Kontinuum
FL		Fluent
FM		frei molekularer Bereich
G		Gasphase
gb		Korngrenzdiffusion
\ddot{i}		Komponente
p		Partikel
p0		Monomer
p*		kritischer Keim
pp		Primärpartikel
qs		über den Querschnitt (eines Reaktors) summiert
sd		Oberflächendiffusion
vd		Volumendiffusion
v_p		Partikel mit Volumen v_p

¹Die Dirac Funktion erhält ihren Wert durch Integration. Ihre Dimension entspricht dem Kehrwert der Einheit der Integrationsvariablen.

² Die Einheiten in Gleichung 2.70 hängen von der zu lösenden Gleichung ab.