
Chapter 1

Introduction

Computational complexity is an area of theoretical computer science in which one aims
to classify a given problem with respect to its worst case complexity measured in required
computation time and space. Here a completeness result is the most satisfying answer as,
informally, it states that the problem’s complexity is fully classified. Now such a result
may prove that the problem will always stay intractable and therefore forbids the existence
of a polynomial time algorithm. One of the possible approaches to overcome this fact is
the restriction of the problem with the hope of getting a faster algorithm for the fragment
of this problem.

Now suppose you want to visit r of your relatives in one big journey. As you are free
from work for only one week you are interested whether there exists an efficient route in
at most one week duration and how it would look like. Thus we consider two different
kind of questions. On the one hand there is a decision problem to which we can answer
with simply yes or no. On the other hand we want to compute one optimal solution.
Without doubt, knowing an optimal solution implies answering the decision problem.
Vice versa, it is not clear if this is possible. Visualizing our situation in a graph of nodes
(one for each relative and one for you) having edges between every pair of nodes, and edge
labels with a distance or travel duration. The naïve approach computes all routes and
selects one of the best. The computational effort of this algorithm measured in runtime is
limited by the factorial of r , that is, in r O(r ) many steps. Having about twenty relatives
and computing one billion routes in one second would still need approximately 2 · 108

years to finish the computation. Further, more computation power would not lower the
waiting time significantly as the problem exhibits exponential runtime. Thus we either
need to find a better algorithm which uses some intelligent approach in deducing one
of the desired routes or we simplify the problem by making several restrictions1. This
could be forcing the triangle inequality to hold, disallowing asymmetric paths, or, e.g.,
forbidding several connections between some nodes (possibly one cannot directly travel
from city x to city y). These approaches may involve understanding which parts of the
problem make it inherently hard to solve.

Another promising approach is a transfer to propositional logic which enlarges the
field of possible applicable algorithms. The most prominent open problem in theoretical
computer science is the P-NP-problem which essentially is the question whether there
exists an algorithm running in polynomial time solving the question from above, or

1Other approaches that will not be discussed in detail are approximation algorithms (see, for instance, [ACG+99]),
or randomized algorithms which have an error property connected to wrong answers (see [MR95] for more
information about this topic).



2 Chapter 1 Introduction

equivalently, deciding the satisfiability of a propositional formula. At present such an
algorithm is not known to exist. But propositional logic has been proven itself to be a very
powerful tool for encoding several difficult problems into the satisfiability problem SAT.
By this property many different algorithms have been exhibited. Another very interesting
property of the problem SAT is that one can efficiently verify solutions of instances, that
is, given assignments to the variables one can check in polynomial time if this is indeed
a correct solution. This fact is the main property of problems in the class NP (which
stands for nondeterministic polynomial time). Further, SAT has received great attention
because a polynomial time algorithm for SAT implies polynomial time algorithms for
every problem of the class NP [Coo71b, Lev73]. Therefore several restrictions of SAT
have been investigated where k-SAT comprises one surprising characteristic. If we restrict
propositional formulae to conjunctive normal form, i.e., any formula can be written as
conjunctions of disjunctive clauses containing only k literals (which are variables or their
negations), then for k = 2 the problem becomes tractable whereas for k = 3 it is intractable
unless P equals NP.

Furthermore, an approach used by H. Lewis in 1979 is the origin of an auspicious
technique for understanding the hardness of a problem involving propositional logic
[Lew79]: H. Lewis used a tool investigated by E. Post 1941 [Pos41], which is a lattice of
all Boolean functions wherefore it is also called Post’s lattice. The main application of this
tool is to fragment any problem which inherently uses propositional connectives into all
parts by means of any possible set of Boolean functions. Thereby H. Lewis was able to
connect the intractability (unless P=NP) of SAT to some specific Boolean function, i.e.,
the negation of the implication function�. Thus whenever a formula is composed of
Boolean functions that are in some way able to express�, one works with an instance of
the intractable version of SAT. Consequently if we would be able to write a propositional
formula for the travel problem from above avoiding� (and functions that can express�
as well) then we would have a polynomial time algorithm for our recent case (unless the
constructed formula is of super-polynomial size). Unfortunately it is not known whether
such a formula exists as this would answer the P-NP-question as well.

The motivation of this thesis strictly encompasses this question. Which functions make
a decision problem hard to solve? Why does the tractability of some problem depend on
the availability of some Boolean function or operator? Here we will investigate several
powerful extensions of propositional logic which are closely connected to modal logic.

1.1 Modal Logic

The connection of propositional logic to computer programs requires an adequate model
where Kripke structures have been proven of great use. These structures are essentially
directed node-labeled graphs simulating the behavior of a computer program in the means
of different program states. Informally, modal logic is the extension of propositional logic
by a new operator ◊ enabling formulae to express transitions between program states.
1918, modal logic has been firstly introduced by C. I. Lewis [Lew18] and has become very
popular since the 1960s [Kri63, HC68] and until now [Gol06, BvW06]. Furthermore a



1.1 Modal Logic 3

complete study with respect to the Boolean fragments of modal logic has been done by
Hemaspaandra et al. [HSS08] recently.

1.1.1 Temporal Logic

Enriching modal logic with concepts to interact more densely with computer programs
leads to the field of temporal logics which have been introduced by A. N. Prior in 1957
who has been called "the founding father of temporal logic" by the Danish Centre for
Philosophy and Science Studies [Pri57, Pri67, Aal11]. From 1971 to 1986 significant effort
by Pnueli, Emerson, Halpern, and Clarke resulted in the definition of the linear time logic
LTL and the computation tree logics CTL� and CTL [Pnu77, CE81, QS82, EH86]. These
logics have been invented to be of great benefit in the process of software engineering for
verifying non-terminating programs. Describing specifications through formulae results
in an evaluation of the written programs which are modeled by the Kripke structures as
explained above. In the course of time, temporal logics emerged as being useful with major
relevance for practical experience [VS85a]. In this context the model checking problem
and the satisfiability problem of these logics are of great interest. For the model checking
problem one asks if a given formula is satisfied in a given world of a given Kripke structure.
Thus essentially the question whether a computer program fulfills its specification. For
the satisfiability problem the question is whether a Kripke structure (containing a world)
exists which satisfies a given formula. Hence we occupy with the question if there exists
a computer program fulfilling this specification. In other words we ask some kind of
consistency question with respect to a specification modeled by a temporal logic formula.

These two problems with respect to the three logics have been completely classified
with respect to their complexity and without making any restrictions to the problems in
[FL79, VS85a, CES86, Eme90, EJ00]. A comparison of these results bare a tremendous
gap between model checking and satisfiability of CTL: a polynomial time model checking
algorithm (and also hardness for P) is accompanied by an exponential time algorithm
for satisfiability with the proof that there can be no better one. For the other two
temporal logics the gap between the complexity of satisfiability and model checking is
similar huge but both problems are intractable unless P = PSPACE. Model checking
in both logics is complete for polynomial space whereas satisfiability remains PSPACE-
complete for LTL and jumps up to double exponential time for CTL�. Whilst for LTL the
classification of all Boolean and modal operator fragments has been achieved by Bauland
et al. [BMS+11, BSS+09], the fragments of the computation tree logics are still open and
will be investigated in Chapter 3.

1.1.2 Description Logic

The concept of databases influenced the development of description logics significantly.
The origin of research has been considered to have started with the work of Brachman
and Levesque in 1984 [BL84], whilst some principles of these logics go back to semantic
networks and the KL-ONE system [BS85]. An extensive introduction to this field of
logics has been written by Baader et al. [BCM+03]. Description logics (DLs) are usually



4 Chapter 1 Introduction

defined as extension of the logic�� however some smaller fragments of�� recently
received attention in the research community, namely the�� - and �� -family [Baa03,
Bra04a, BBL05a, BBL08]. DLs are widely used in the semantic web in terms of the web
ontology language OWL 2 [MPSP09]. Several terms from the web ontology language are
synonyms of terms in the family of description logics and connect these two areas very
closely. Further, DLs are used in the codification of medical knowledge by ontologies
whose definition is explained below.

Regarding the connection to databases the two main formalisms in DLs are terminology
and assertional boxes which are abbreviated by the terms TBox and ABox. The union of
both is referred to as an ontology. An ABox is essentially a relational database with its
pairs whereas the TBox expresses constraints for the database in form of rules (axioms,
or without restrictions, general concept inclusions GCI). These rules are pairs of formulae
which are composed of the functions and �, or �, and not ¬ as well as the role quantifiers
which can be existential ∃R or universal ∀R for some role R. The different kinds of used
symbols for expressing the Boolean functions base on the origin of the logics which was
disjoined from modal logic as described above. However, the connection to first order
logic is immediate but DLs have more efficient decision problems. With respect to the
ability to express arbitrary Boolean functions��� can be considered as best suitable
for the use with Post’s lattice due to the availability of ∧, ∨, and ¬ in this logic. The
remarkable part for the decision problem with respect to TBoxes is the following. A TBox
� is said to be consistent for the corresponding model if and only if every axiom in �
is consistent with every world in the model. By virtue of this definition this problem is
already complete for exponential time [BBL05a, Hof05] and thus prohibits the existence
of a polynomial time algorithm.

More formally the decision problems of interest for DLs are

• the satisfiability problem of TBoxes,

• the concept satisfiability problem with respect to a given TBox,

• the satisfiability problem of an ontology, and

• the subsumption problem with respect to a given TBox.

The latter problem is a special kind of the implication problem in the sense of description
logics. Further, a method similar to logical deduction which is called structural comparison
has been deployed but not proven itself to always state correct results. Lacking the
completeness it has been shown to be weaker than logical subsumption recently [NB03].
Thus subsumption can be seen as one of the central problems in the area of DLs.

The unrestricted versions of the aforementioned decision problems have been classi-
fied previously by their correspondence to propositional dynamic logics [Pra78, VW86,
DM00]. To the best of the author’s knowledge a complete classification of these problems
with respect to all possible Boolean functions has not been done yet and will be the topic
of Chapter 4. Especially the study of less commonly used operators as the negation of
implication� or the binary exclusive-or ⊕ will give an insight to the influence of Boolean
functions on tractability.



1.2 Results 5

The classification of all Boolean function and operator fragments of the concept satis-
fiability problem for the description logic ��� immediately follows from the work
of Hemaspaandra et al. [HSS08] due to the equivalence to modal logic. They obtained a
trichotomy which comprises of complexity degrees from contained in P, through coNP-
complete to PSPACE-complete fragments.

1.1.3 Post’s Lattice

As motivated above, our approach is to follow Lewis’ technique for getting the most fine
granulated and complete classification with respect to all possible Boolean functions and
operators for each of the decision problems which have been mentioned above. Previously
this approach has been followed extensively in the areas of constraint satisfaction [Bau07,
Sch07, Sch08], nonmonotonic logics [BMTV09a, Tho09, CMTV10, Tho10], modal and
propositional logics [Rei01, HSS08, BMTV09b], abduction, and argumentation [CST10,
CSTW10]. These studies have one goal in common. They want to understand which
Boolean functions play the role of� in the therein studied extended propositional logics.
This is the main goal in this thesis as well.

More formally let B be a finite set of Boolean functions. Then we define the clone [B] of
B as the set of all Boolean functions which can be constructed by arbitrary composition and
projection of functions from B . B is called a base of [B] in this context. Post constructed
the infinite lattice comprising of all possible clones and proved the existence of a finite
base for each of these clones. Usually one aims to achieve a complete classification with
respect to Post’s lattice. Therefore one needs to overcome the infinity within the lattice by
stating matching upper and lower bounds ranging from both ends of the infinite chains
in the lattice (see Figure 2.2 on page 16). By definition of the lattice those results state
completeness results for any decision problem fragment with respect to each clone within
the infinite chain.

1.2 Results

In the first part of Chapter 3 we visit the satisfiability problem of CTL and classify the
temporal operator and Boolean fragments. There we show how they form a trichotomy
ranging through NP-, PSPACE-, and EXP-complete cases (see Figure 3.6 on page 50)
whereas the Boolean fragments, without respect to the temporal operators, lead to TC0-,
NC1-, and EXP-complete cases (see Figure 3.7 on page 51). Section 3.1.4 aims to describe the
problems occurring when working with affine cases which resisted getting fully classified
for this decision problem in temporal logic. Furthermore, we will visit extensions of
the temporal logics CTL and CTL�, particularly, (i) CTL+ which behaves similarly as
CTL-SAT (and we also classify in parallel the fragment LTL+) and (ii) the fairness extension
ECTL where all relevant operator fragments are either PSPACE- or EXP-complete.

The second part of this chapter covers the research on the model checking problems
of CTL, CTL�, and the same extensions as above. As the model checking problem for
CTL is tractable, and in fact P-complete, we will follow an approach by Sistla and Clarke:
we investigate three different kinds of fragments in terms of allowed negation symbols,



6 Chapter 1 Introduction

starting with monotone, atomic negations only, and positive fragments (for an explicit
definition see page 52). The latter one are fragments where operators (not Boolean
functions) may not occur in the scope of a negation. Surprisingly, we will show that
these three problems are actually computationally equivalent (see Theorem 3.24), and are
NC1-complete if no temporal operator is available, LOGCFL-complete if either we have
a non-empty subset of {EX,EF} or {AX,AG}, and P-complete otherwise. Hence, most
fragments of the CTL model checking problem are inherently sequential (see Figure 3.11
on page 73). Thus there is no way to develop parallel algorithms for these cases. While
ECTL behaves analogously to CTL, the other extensions exhibit different properties, and
their classifications range through six different complexity classes (see Theorem 3.27 and
Corollary 3.28). As a starting point for further research, we will achieve a classification for
all operator/quantifier fragments of cardinality at most two. We will show how fragments
which are easy for this problem, use some CTL-algorithms, and how intractable cases
depict parallels to the model checking problem of LTL, in Theorem 3.29.

Finally in Chapter 4 we turn towards the area of description logics, an extension which
is widely used by the semantic web community. There we visit all fragments with respect
to the possible subsets of the quantifiers ∃ and ∀, and all Boolean clones. Given a single
terminology� using both quantifiers, we will see how the connected satisfiability problem
is either EXP-complete or trivial, i.e., always having satisfiable terminologies. The latter
holds if and only if only c -reproducing functions for c ∈ {�,⊥} are used in � . Allowing
only one quantifier turns the fragments which use conjunctions or disjunctions tractable,
i.e., P-complete. Without any quantifiers we reach NLOGSPACE-completeness for the
fragments using only unary functions. The classification for the decision problems asking
about the satisfiability of a concept with respect to a terminology behaves similarly but
with two exceptions. First, the ⊥-reproducing cases are not trivial any longer. Secondly,
the lower complexity bounds can be improved to hold without using the constant �. An
overview of the results is depicted in Table 4.1 on page 94.

Lastly, in Section 4.2 we classify the implication problem adjusted to description logics,
which is the subsumption problem with respect to all quantifier sets and Boolean function
sets. There we will show that whenever we are able to express one of the constants
besides having access to all quantifiers, the complexity of the fragment remains EXP-
complete. By the use of only one quantifier the problem becomes tractable (P-complete) if
either conjunctions or disjunctions are allowed—depending on which quantifier is existent.
Disallowing quantifiers in general leads to a similar classification as previously has been
achieved by Beyersdorff et al. for the propositional implication problem [BMTV09b]
with a slight exception for the affine cases involving the function exclusive-or ⊕. The
complete arrangement in Post’s lattice is visualized in Figures 4.1 and 4.2 on pages 105 and
106.

1.3 Publications

Sections 3.1.1 to 3.1.3 have been previously published in [MMTV09] but the proof of
Theorem 3.4 (1.) is new. Sections 3.1.4 and 3.1.5 contain unpublished results about the



1.3 Publications 7

affine cases and extensions. Section 3.2 contains published results from [BMM+11] but
Section 3.2.3 contains unpublished results about fragments of the model checking problem
for CTL�. Section 4.1 has been published in [MS11a, MS11b]. Section 4.2 contains new
and unpublished results.




