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1 Simulation of smectics: model and
method

This chapter presents the model of the doped lamellar phase, and the method used to
study it: numerical simulations.

1.1 Off-lattice, coarse-grained model

1.1.1 Models of lamellar phases

Molecular dynamics simulations of lipid bilayers which include atomic details have been
performed for about three decades [190, 52, 59]. Recent publications report simulations
of several hundred of lipids in thousands of water molecules [114, 99]. The available
scales in time and space are still limited compared to many biochemical processes, but
the performance is increasing enormously, thanks to the parallelization of simulation
codes and to faster algorithms. Ten years ago, atomic models permitted to describe the
different conformations of molecules in the solid, gel and liquid phases of lipid bilayers
[79]. Since then, atomic molecular dynamics simulations have even been used to investi-
gate the interactions of amphiphilic bilayers with other molecules. Due to the complexity
of biological membranes, the number of interesting systems which can be simulated is
huge: mixtures of lipids, adsorption of peptides, inclusion of cholesterol (see Fig. 1.1 A,
from [32]), inclusion of membrane proteins, diffusion of ions, etc.

Limiting the accuracy of the calculations by cutting-off the potentials at about 1 nm
permits to study a bilayer during longer times (256 DPPC during 0.5 μs [113]) or to
simulate more molecules (2000 DPPC for 16 ns [114]).

Coarse-grained molecular models are obtained by neglecting atomic details and keep-
ing only the structure of the molecules. The coarse-grained “molecules”are typically
derived from the “realistic”molecules by grouping some atoms together into beads in-
teracting via effective potentials. The electrostatic interactions and the dihedral angle
potentials are often neglected. For example, a molecule of hexane C6H14 is possibly
coarse-grained into a chain of six “united-atoms”interacting via the popular 6 − 12
Lennard-Jones radial pair-potential (6-12 LJ) ([201] and Ref. in it).

VLJ(r) = 4ε
[(σ

r

)12
−
(σ

r

)6
]

where ε is the potential depth, and σ a typical length for the interaction. The essential
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A B

Figure 1.1: A: Atomic model of a bilayer: 108 molecules of DPPC, 5 301 molecules of
water and 54 molecules of cholesterol [32]. B: Molecular coarse-grained model
of a bilayer with ht4 amphiphiles (one head-bead linked to a chain of four
tail beads) [69].

features of Lennard-Jones potentials are a soft repulsion at small distances (r ≤ 21/6σ),
and a short-ranged attraction (VLJ ∝ −r−6).

Shelley et al. [174, 173] proposed a coarse-grained model of dimyristoylphosphati-
dylcholine (DMPC). One amphiphile of more than 100 atoms was reduced to 13 units
interacting via Lennard-Jones-type potentials (6-12 LJ, but also 4-6 LJ, among others).
In this case, the coarse-grained simulations cost about 400 times less computer time than
the all-atoms simulations.

Further simplified models describe the interactions between the amphiphilic molecules
only qualitatively, but much more generally (see Fig. 1.1 B, from [69]). The main
components included in these models are: (i) the amphiphilic structure, (ii) the internal
degrees of freedom of the molecules, and (iii) the interactions between amphiphiles and
solvent molecules. For example, short amphiphilic oligomers composed of hydrophobic
tail-beads linked to hydrophilic head-beads self-assemble into micelles or bilayers, whose
shape fluctuations can be studied by numerical simulations [180, 69, 129].

Lattice models also have proven to be very successful to reproduce the phase dia-
gram of amphiphilic solutions [100, 33]. Müller et al. explored the mechanical stability
of model membranes composed of diblock-copolymers dissolved in bulk homopolymers
using lattice Monte Carlo simulations [127, 126], and compared the results to those of
self-consistent-field theory.

By neglecting additionally the internal degrees of freedom of the amphiphilic molecules,
Leibler et al. could simulate a unilamellar vesicle (see Fig. 1.2 A, from [103]).

Finally, a different class of models neglects even the amphiphilic character of the
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molecules, to focus on the properties of membranes built by amphiphilic molecules. The
membranes are represented as a undulating surfaces. Triangulated elastic surfaces, for
instance, have proven to be a good model to study the shape fluctuation of vesicles (see
Fig. 1.2 B, from [71]) or the proliferation of pores in bilayers [175, 177].

A B

Figure 1.2: A: Model of a bilayer as an assembly of spheres composed of three parts: one
hydrophobic, in the center (yellow), and two hydrophilic at the poles (red
and blue) [103]. B: Model of bilayer as a triangulated surface with fluctuating
topology [71].

1.1.2 Definition of the model

The model used in this thesis is an extension of a coarse-grained off-lattice model pro-
posed by Grest and Kremer in 1986 [73], which has been used extensively to simulate
polymers [97, 47]. It has been extended recently to study the rheologic properties of
amphiphilic dimers [182, 75]. The model resembles the one used by Goetz et al. [69]
(see Fig. 1.1 B): it is a coarse-grained off-lattice molecular model. The amphiphiles
are represented by tetrameric chains composed of two hydrophobic tail beads and two
hydrophilic head beads, denoted by hhtt or h2t2. The polymer is a simple linear chain
of hydrophilic beads (see Fig.1.3). Chemical details, long-range interactions or chain
stiffness are not incorporated in the model.

The forces derive from radial, short-ranged pair potentials. The beads interact through
a soft repulsion and a short-ranged attraction characterized by two parameters: a length
defining the range of the interaction σ, and an energy defining the depth of the potential
ε. The units are the following: for the energies kBT , for the lengths σ, and for the mass
of the beads, m. These units lead to the time unit τ = (mσ2/kBT )1/2.

A bead represents approximatively three alkyl groups, or eventually three water
molecules. The orders of magnitude of the units are then kBT � 10−21 J , m � 10−25 kg,
and σ � 5 Å [174]. The time unit is approximatively one picosecond (τ � 10−12 s).
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Figure 1.3: Molecules of the model: solvent beads, amphiphiles and polymers. They are
composed of four sorts of beads: solvent beads, tail beads, heads beads and
polymer beads.

soft repulsive core

short ranged-attraction

bond potential

Figure 1.4: Radial pair potentials as a function of the inter-particle distance. A: Po-
tential of interaction between beads that are not connected: ULJ-cos. B: Po-
tential of interaction between connected beads: ULJ-FENE (solid line). The
potentials of non-connected pairs are represented as well (dashed line).
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solvent head tail polymer
solvent ε ε 0 ε

head ε ε 0 ε
tail 0 0 ε 0
polymer ε ε 0 ε

Table 1.1: Potential depths for the non-bonded interacting beads. In most cases, ε =
1.1 kBT

Force fields

Unconnected beads interact via the LJ − cos potential, defined by

ULJ-cos(r) =

⎧⎪⎨
⎪⎩

4kBT
[(

σ
r

)12 − (σ
r

)6 + 1
4

]
− ε if r ≤ 21/6σ

ε
2

[
cos(αr2 + β) − 1

]
if 21/6σ ≤ r ≤ rc

0 if rc ≤ r

, (1.1)

where σ is the unit of length, α = π/r2
c − 21/3σ2 and β = 2π − r2

cα. The cutoff is chosen
at rc = 1.5σ (see Fig. 1.4 A for an illustration). The minimum of potential (r � 1.16σ)
and the cut-off (r = 1.5σ) are independent of the potential depth ε. At ε = 0, the
potential is strictly repulsive.

The potential depths of the several interactions between unconnected beads are col-
lected in Table 1.1.

Connected beads repel each other with the same soft-core potential as non-bonded
beads, but at larger distance, the interaction is attractive through a “finite extendable
non-linear elastic”(FENE) potential (see Fig. 1.4 B).

ULJ-FENE(r) =

⎧⎨
⎩ 4kBT

[(
σ
r

)12 − (σ
r

)6]− (κr2
b

2

)
ln
[
1 −
(

r
rb

)2
]

if r ≤ rb

∞ if rb ≤ r
. (1.2)

The parameters used for in this thesis are rb = 2.0σ and κ = 7.0 kBT · σ−2, as in [47].

Truncation of the potentials

The potentials of the model are cut off at 1.5σ or 2σ: This permits to optimize the
simulation code by using the so-called neighbor-lists and cell-lists [1, 63]. The principle
is explained in the following.

If every particle interacts with every other particle of the simulation box, the number
of interactions is proportional to N(N − 1)/2, where N is the number of bead in the
simulation box. If the potential is short-ranged and the density is fixed, the number of
interactions increases no longer quadratically, but linearly with N. As most of the time
of computation is spent calculating the forces, reducing the cut-off rc significantly speeds
up the calculations.
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Still, the number of distances to check remains N(N − 1)/2. To speed up the calcula-
tions even more, the algorithm uses the so-called neighbor-lists combined with cell-lists
[63, 1].

The principle of the neighbor-lists (also named Verlet list) is the following: A list of
pairs of particles at the distance r that are close enough to interact is stored (r ≤ rc).
For the calculation of the forces, instead of testing N(N − 1)/2 distances at each time
step, the algorithm directly uses the list of interacting neighbors. The key point is that
pairs of particles which are at the distance r slightly larger than the cutoff rc are also
stored in the neighbor-list (r ≤ rc + ds, where ds is a “distance of security”). Thus
the neighbor-list does not have to be updated at each time-step, and much computation
time is saved.

Additionally, the construction of the neighbor-lists is optimized by cell-lists: the space
is divided into cells, in which the particles are sorted. The lists of cells whose particles
may interact is set up only once, at the beginning of the simulation. During the simu-
lation, for each Verlet list update, only the pairs of particles belonging to the pairs of
cells registered in the cell-list are checked. The computational time decreases because
the construction of the list becomes much cheaper than N(N − 1)/2 checks of distances.

Finally, the program is implemented with an optimized domain-decomposition scheme,
to run the simulations in parallel [148, 182].

Besides these technical considerations, the truncation of the potentials strongly in-
fluences the properties of the system. For instance, the critical temperature of the
Lennard-Jones fluid decreases from kBTc/ε = 1.316 to 1.085 when the potential is cutoff
at 2.5σ and shifted to get a continuous potential [1]. Additionally, as the model does
not include long-range interactions, in particular non-screened electrostatic forces, the
study is restricted to neutral lamellar phases - or to charged lamellar phases where the
long-range interactions are screened by a solvent with a high dielectric constant.

1.1.3 Phenomenology of the model

As the phase diagram of the model is complex, I outline here only the essential features
relevant to this thesis. For pedagogical reasons, the details of the simulations are not
discussed here (for more details, see Section 1.2).

The solvent: a simple fluid

The solvent beads repel each other at short distance (r ≤ 21/6 σ), and attract each other
at intermediate distance (21/6 σ ≤ r ≤ 1.5σ), as depicted in Fig. 1.4 A. Despite the
cutoff of the potential, the pure solvent is similar to a Lennard-Jones fluid. Its phase
diagram is expected to be composed of a gas phase, a fluid phase and one or more
crystalline phases. For this thesis, the gas phase is not relevant.

To detect approximatively the fluid-to-solid phase transition of the solvent, I studied
its density ρ as a function of the potential depth ε, with a simulation in the constant-
NPT ensemble (see Fig. 1.5). As expected, the density increases when the potential
becomes more attractive (increasing ε). The abrupt increase of the density indicates the
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Figure 1.5: Density of the solvent as a function of the potential-depth in NPT ensemble
(N = 1000 beads, P = 1 kBT · σ−3).

fluid-to-solid transition. Since the transition is first-order, we observe hysteresis when
the potential depth is decreased again.

The minimum density at which the solid is observed is about 0.93 beads per unit
volume. To ensure that the system remains fluid, one simulates it at a density close to
0.85 beads per unit volume.

Pure amphiphiles: the order-disorder transition

The amphiphiles are represented by chains of two tail beads and two heads beads. The
tail-head pairs repel each other at short distance, whereas the head-head or tail-tail pairs
additionally attract each other at intermediate distances. If they were not connected to
each other, the heads and tails would demix for ε larger than 0.6 kBT [182]. In the
case of connected chains, increasing the potential depth ε drives a self-assembly. For
pure amphiphilic systems, two phases have been observed. Two snapshots in Fig. 1.6
represent a pure h2t2 system in the disordered phase (small ε) and in the ordered liquid
crystalline lamellar phase (large ε).

Quantitatively, the transition between the two phases can be detected by an abrupt
variation of the nematic order parameter S (defined in Section 2.1.2). The transition
occurs around ε = 0.8 kBT (see Fig. 1.6). As the transition is first-order, the system
exhibits hysteresis.

To simulate the lamellar phase, I have chosen the value ε = 1.1 kBT . The density 0.85
beads per unit volume corresponds then to a pressure of 3.0 kBT · σ−3.

More generally, other amphiphilic oligomers hntm may self-assemble into a smectic
A. For example, dimers undergo the order-disorder transition at the potential depth
ε = 1.2 kBT . I have chosen to simulate tetramers because they are small, symmetric
(monolayers have no spontaneous curvature), and their lamellar phase is stable relative
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