
CHAPTER 1

INTRODUCTION

The aim of this chapter is to provide an overview of the agenda of this thesis.
We introduce the underlying optimization problem and explain step by step
our motivation for choosing the research questions that are studied in this
thesis.

We assume that a general mixed-integer linear program (MILP) is given
in the form

max c�x s.t. Ax = b,

x ≥ 0,

xi ∈ Z for i ∈ I,
xi ∈ R for i ∈ C,

(1.1)

where A, b, and c are rational and I, resp. C, is a set of integer constrained,
resp. continuous, variables. The linear programming relaxation of (1.1) is
the optimization problem (1.1) where the condition xi ∈ Z is replaced by the
weaker condition xi ∈ R for all i ∈ I. To avoid trivial cases we assume that
the feasible region of (1.1) is non-empty and that its linear programming
relaxation is bounded. Solving the linear programming relaxation yields an
optimal vertex x∗ with corresponding sets B and N of basic and non-basic
variables which satisfy

xi = fi +
∑
j∈N

rjixj ∀i ∈ B,

where fi ∈ Q+ and rji ∈ Q for all i ∈ B and all j ∈ N . We assume that x∗ is
not feasible for (1.1), otherwise we have already found an optimal solution.
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Our aim is to generate cutting planes (or cuts for short) which cut off x∗,
i.e. inequalities which are valid for every feasible point of (1.1), but violated
by x∗.

Virtually all traditional cutting planes that are used by general-purpose
MILP solvers, most notably lift-and-project cuts (see, for instance, [BCC93]),
Gomory mixed-integer cuts (see, for instance, [Gom60]), or mixed-integer
rounding cuts (see, for instance, [NW90]), are derived by considering only
one equation. Normally, the strategy is to generate a linear combination
of the original constraints Ax = b. Then one applies integrality arguments
to the resulting equation. Cuts obtained in this way are split cuts (see, for
instance, [CKS90]). Unfortunately, an approach that is based on such cuts
alone does not give rise to a finite cutting plane algorithm. In [CKS90], an
instance in only three variables is presented and it is shown that a cutting
plane algorithm based on split cuts does not converge finitely.

Example 1.1. Consider the following MILP.

max t s.t. −x1 + t ≤ 0,
−x2 + t ≤ 0,

x1 + x2 + t ≤ 2,
x1, x2 ∈ Z,

t ∈ R+.

The cut needed to solve this problem is t ≤ 0. However, in [CKS90] it is
shown that this cut cannot be obtained by applying split cuts only. �

In [ALWW07], Andersen et al. initiated a new approach for cutting plane
generation by considering two rows of a simplex tableau simultaneously. This
approach allows to deduce cutting planes that cannot be obtained by consid-
ering one single equation. In particular, the desired cut t ≤ 0 in Example 1.1
can be derived immediately.

Meanwhile, the two-row case has been analyzed quite exhaustively, most
notably due to Andersen et al. [ALWW07], Borozan and Cornuéjols [BC07],
Cornuéjols and Margot [CM08], and Basu et al. [BBCM11]. However, the
basic idea of the two-row approach can be generalized to the case of multiple
rows in a straightforward way. For that, the point of departure is an optimal
vertex x∗ of the linear programming relaxation of (1.1). We assume that
m := |B ∩ I| ≥ 2 and fi 	∈ Z for at least one i ∈ B ∩ I. We consider the set

PI :=

{
(x, s) ∈ Zm × Rn

+ : x = f +
∑
j∈N

rjsj

}
,

where N := {1, . . . , n} represents the non-basic variables and f , resp. rj , is
the vector consisting of all fi’s, resp. r

j
i ’s, such that i ∈ B ∩ I.
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The set PI is the underlying mixed-integer set in this thesis. Our motiva-
tion for analyzing PI is that it can be obtained as a relaxation of the feasible
region of a general MILP. Therefore, valid inequalities for PI give rise to
cutting planes for the original mixed-integer set. Consequently, our aim is to
derive valid inequalities for PI , or equivalently, for conv(PI).

In Chapter 3, we show that valid inequalities for conv(PI) correspond to
combinatorial objects in the space of the discrete variables. More precisely,
they correspond to lattice-free polyhedra, i.e. polyhedra that do not contain
an interior integer point. The basic properties of the set conv(PI) are sum-
marized in Section 3.1, and the relation between lattice-free polyhedra and
the facet-defining inequalities for conv(PI) is presented in Section 3.2.

By considering conv(PI), the feasible region of the original MILP (1.1) is
relaxed in two ways. First, we drop all integrality conditions on the non-basic
variables. Second, the non-negativity restrictions on all basic variables are
ignored. The latter relaxation has been introduced by Gomory [Gom69] and
is known as the classical group relaxation. The first relaxation, however, is
the great novelty in the new approach. It preserves much of the complexity
of the original model, but keeps it sufficiently simple to analyze it.

The following example illustrates the cutting plane approach that we have
in mind.

Example 1.2. Fig. 1.1 exemplifies our intended approach to generate cut-
ting planes. For simplicity, let m = 2. The gray regions in Fig.s 1.1(a) and
1.1(b) represent the projection of the linear programming relaxation onto
the space of the x-variables. After relaxing the integrality conditions on the
non-basic variables and the non-negativity restrictions on the basic variables,
we obtain a corner polyhedron (see, for instance, [Gom69]). The convex hull
of the two dashed half-lines in Fig.s 1.1(a)–1.1(c) is the projection of the
corner polyhedron onto the space of the x-variables. Fig. 1.1(b) shows how
the solid lattice-free triangle is used to cut off x∗. The intersection points
of the triangle and the two dashed half-lines determine the cutting plane.
After adding the cutting plane, the feasible region of the linear programming
relaxation becomes smaller. Its projection onto the space of the x-variables
is the gray region in Fig. 1.1(c). �

Since, by assumption, x∗ is not feasible for (1.1), we aim at generating
cutting planes that are violated by the basic solution x∗

i = fi for all i ∈ B
and x∗

j = 0 for all j ∈ N . For that, we look for valid inequalities for conv(PI)
which cut off the point (f, o). It turns out that the non-trivial facet-defining
inequalities for conv(PI), i.e. the strongest inequalities that we can derive
from our relaxation, do perform this task: all of them are violated by (f, o).
This implies that we can focus our attention on non-trivial facet-defining
inequalities for conv(PI). At this point the enormous power of the applied
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x∗

(a) The point x∗ must be cut
off from the integer points in
the feasible region.

x∗

(b) The solid triangle contains
x∗ in its interior, but none of
the feasible integer points.

x∗

(c) The solid line separates x∗

from the integer points in the
feasible region.

Figure 1.1: Derivation of a cutting plane.

relaxation comes into play, because all these non-trivial facet-defining in-
equalities correspond to lattice-free polyhedra which possess beautiful geo-
metrical properties. The exact relation is stated in Theorem 3.9 where we
show that every non-trivial facet-defining inequality for conv(PI) can be de-
rived from a lattice-free polyhedron which has a representation as the sum of
a polytope and a linear space. It follows that strongest cutting planes are as-
sociated with maximal lattice-free polyhedra, i.e. lattice-free polyhedra which
are not properly contained in another lattice-free polyhedron. Structural
properties of maximal lattice-free polyhedra entail information on the corre-
sponding cutting planes and therefore, instead of analyzing cutting planes,
we can equivalently analyze maximal lattice-free polyhedra. As a result of
this, several questions related to these polyhedra and their associated cutting
planes arise.
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Certainly, the aim in cutting plane generation should not be to produce
a bulk of cuts which just cut off the current optimal linear programming
solution, but rather to identify a (preferably small) set of well-chosen cuts
which are “important” in some sense. Here, “important” is difficult to define.
There are several approaches to evaluate cutting planes, for instance with
respect to the volume which is cut off, a comparison of the cut coefficients,
or the improvement of the objective function value after adding a cut or a
set of cuts. The choice of the measure is highly dependent on the particular
structure of the problem. Since we start from a general MILP it is simply
not possible to say which measure is most suitable. In this thesis, we use a
strength measure of Goemans [Goe95] to evaluate non-trivial facet-defining
inequalities for conv(PI). Every such inequality corresponds to a maximal
lattice-free polyhedron in the m-dimensional space of the x-variables. And
each such polyhedron P can be represented as P = P + L, where P is a
polytope and L is a linear space. The codimension of L is called the split-
dimension of P . In turn, the split-dimension of a non-trivial facet-defining
inequality I for conv(PI) is defined to be the smallest split-dimension of
a maximal lattice-free polyhedron P such that P can be used to derive an
inequality for conv(PI) which is equal to or which dominates the inequality I .

In Chapter 4, we investigate which of the non-trivial facet-defining inequal-
ities for conv(PI) are needed to approximate conv(PI) sufficiently well with
respect to the strength measure of Goemans. In Theorem 4.4, we show that,
in general, good approximations for conv(PI) can be expected only by having
available all the non-trivial facet-defining inequalities for conv(PI) of split-
dimension m. This result is clearly unsatisfactory since the complexity of the
corresponding maximal lattice-free polyhedra increases with increasing split-
dimension. Consequently, inequalities of split-dimension m are difficult to
generate. In contrast to this negative result on the strength, in Theorem 4.7,
we show that by restricting the size of the data, inequalities of split-dimension
m can be approximated using inequalities of split-dimension one (i.e. split
cuts). This is a positive message since split cuts are the easiest objects in
terms of complexity. In particular, we show that, given the dimension m of
the x-variable space, the fractionality of the current optimal solution (f, o),
and the max-facet-width of a lattice-free polyhedron P of split-dimension m,
then the inequality corresponding to P can be approximated to within a
constant factor which involves only these three quantities. For the special
case where P is a regular lattice-free simplex (RLS), in Theorem 4.8, we even
state a constant which involves only the dimension m. This raises hope that
cuts with low split-dimension perform well in practice.
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In Chapter 6, we address the case m = 2 in order to obtain deeper results
on the approximability of inequalities of split-dimension two by split cuts.
As pointed out, the non-trivial facet-defining inequalities for conv(PI) are
associated with maximal lattice-free polyhedra. In dimension two, these
polyhedra can be partitioned into five types which are shown in Fig. 1.2 (see
Proposition 5.3 on p. 37 for the precise definition of each type).

(a) Split. (b) Type 1 triangle. (c) Type 2 triangle.

(d) Type 3 triangle. (e) Quadrilateral.

Figure 1.2: All types of two-dimensional maximal lattice-free polyhedra.

Since every non-trivial facet-defining inequality for conv(PI) corresponds
to one of the above maximal lattice-free sets, they are called split, type 1,
type 2, type 3, or quadrilateral inequalities. In [BBCM11] it has been shown
that the closures of split and type 1 inequalities may produce an arbitrarily
bad approximation of conv(PI), whereas the closures of type 2 or type 3
or quadrilateral inequalities deliver good approximations in terms of the
strength measure of Goemans. More concretely, in [BBCM11] sequences
of examples are constructed in which cuts from triangles of types 2 and 3,
and quadrilaterals cannot be approximated to within a constant factor by
using split and type 1 inequalities only. The approximation becomes worse
as the triangles and quadrilaterals converge towards a split. We think that
this is geometrically counterintuitive. Therefore, in Chapter 6, we refine the
argument by taking into consideration the probability that such a situation
emerges when f is uniformly distributed in the interior of a given maximal
lattice-free triangle of type 2, type 3, or quadrilateral. The precise model
is explained in Section 6.2. Our main result of the probabilistic analysis in
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Chapter 6 is stated in Theorem 6.2, where we show that the addition of a
single type 2 inequality to the split closure becomes less likely to be beneficial
the closer the type 2 triangle looks like a split. Our analysis in Chapter 6
suggests that this is true for type 3 and quadrilateral inequalities as well.

The performance of cuts may be evaluated in two different ways. In dimen-
sion two, if one considers only one round of cuts, then – using the strength
measure of Goemans – split and type 1 inequalities can be arbitrarily bad in
approximating conv(PI). On the other hand, within a cutting plane frame-
work where several rounds of cuts are considered, it is enough to add split
and type 1 inequalities iteratively, in order to terminate with an optimal
mixed-integer point after a finite number of applied rounds (see [DL09] and
also [BCM11] and [DPW11] for a generalization of the results in [DL09]). Us-
ing the correspondence between the non-trivial facet-defining inequalities for
conv(PI) and maximal lattice-free polyhedra this insight leads to a natural
question: Which maximal lattice-free polyhedra are important in a cutting
plane framework? Admittedly, this question is too general to be answered
completely within this thesis. Nevertheless, the answer must have to do
with the integer points on the boundary of the maximal lattice-free polyhe-
dra. Since rationality of the input data is assumed we only need to consider
maximal lattice-free rational polyhedra.

In Chapter 7, we show in Theorem 7.2 that, given the dimension (i.e. the
number of simplex tableau rows from which a non-trivial facet-defining in-
equality for conv(PI) is derived) and the rationality of a corresponding max-
imal lattice-free polyhedron P , then only finitely many different shapes are
possible for P , provided we identify any two polyhedra which coincide up to
a transformation which preserves the integer lattice. Unfortunately, “finitely
many” does not mean “few”. Indeed, in Section 7.3 we provide an upper
bound on the volume of such a polytope. Our bound is by far not best
possible, but suggests that the number of potential shapes may explode dra-
matically with increasing dimension. This makes clear that there is no chance
to enumerate all shapes based on a computer code, even for small dimensions.

The fact that in dimension two only split and type 1 inequalities are needed
within a cutting plane framework is not just coincidence, but rather has to
do with the integer points on the boundary. The X-body1 of a lattice-free
polyhedron is the convex hull of the integer points on its boundary. In par-
ticular, a lattice-free polyhedron coincides with its X-body if and only if it
is an integral polyhedron in the sense that every minimal (non-empty) face
contains integer points. In Fig. 1.2, only the split and the type 1 triangle

1The notion “X-body” is quite unintuitive, but we use it for historical reasons.
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are integral polyhedra. Recently, it has been proved by Del Pia and Weis-
mantel [DPW11] that the X-body of a lattice-free polyhedron is connected
with the importance of the polyhedron in a cutting plane procedure. To be
precise, within a cutting plane framework, only lattice-free integral polyhedra
are needed. Thus, a characterization of maximal lattice-free integral polyhe-
dra is desired. In dimensions one and two, all shapes of maximal lattice-free
integral polyhedra are known. On the other hand, their number is expected
to be huge in dimensions beyond three.

In Chapter 8, we classify all three-dimensional maximal lattice-free integral
polyhedra. We first show that we can restrict our attention to polytopes.
Then, in Theorem 8.1, we enumerate all three-dimensional maximal lattice-
free polytopes with integer vertices.

Theorems 6.2 and 8.1 are proved by intensively using two-dimensional tools
which cannot be deduced offhand. Therefore, we dedicate an extra chapter
to the two-dimensional relation between the area and the lattice width of
lattice-free convex sets. In Chapter 5, we prove several inequalities which
involve the area and the lattice width in the plane. In Theorem 5.6, we
present our results for arbitrary lattice-free convex sets and in Theorem 5.9
we present our results for centrally symmetric ones. We further characterize
the extreme lattice-free convex sets and relate our results to the covering
minima introduced in [KL86]. Moreover, in Theorem 5.10 we rectify a result
of [KL88] with a new proof.


