Inhaltsverzeichnis

1	Einleitung					
	1.1	Motiv	ation	1		
	1.2	Zielse	tzung	4		
2	Struktur und Spektroskopie					
	2.1	Releva	anz der OH- und NO-Spektroskopie	5		
	2.2	2 Struktur des OH- und NO-Radikals				
		2.2.1	Hund'sche Kopplungsfälle	9		
			2.2.1.1 Fall (a)	10		
			2.2.1.2 Fall (b)	12		
		2.2.2	Auswahlregeln elektronischer Übergänge	13		
		2.2.3	Elektronische Struktur des OH-Radikals	14		
		2.2.4	Elektronische Struktur des NO-Radikals	16		
		2.2.5	Nomenklatur der Übergänge	18		
	2.3	Laseri	induzierte Fluoreszenz (LIF)	19		
		2.3.1	Stoßinduzierte Energietransferprozesse	21		
			2.3.1.1 Rotationsenergietransfer (RET)	22		
			2.3.1.2 Elektronische Fluoreszenzlöschung (Quenching) \ldots	24		
			2.3.1.3 Vibrationsenergietransfer (VET)	28		
		2.3.2	Prädissoziationseffekte	29		
	2.4	Simul	ation von Fluoreszenzspektren mit LASKIN	30		
3	Exp	oerime	nteller Aufbau	33		
	3.1	Das P	Pikosekunden-System	34		

	3.2	Das Nanosekunden-System	37			
	3.3	Untersuchungsobjekte	39			
		3.3.1 Brennertypen und Gaszelle	39			
		3.3.2 Flammenzusammensetzung und Gasmischungen	41			
4	Dat	enaufnahme und Kalibrierung	45			
	4.1	Skalierung und Kalibrierung der Rohdaten	46			
	4.2	Fluoreszenzamplitude und zeitliche Abklingkurve				
	4.3	Anregungs-Emissions Spektroskopie				
	4.4	Polarisationsaufgelöste Messungen				
5	Mee	chanismus des VETs nach Anregung von OH	55			
	5.1	Rotationsstrukturen von $v' = 0, 1$	56			
	5.2	Zeitliche Profile der Zustände $v' = 0, 1$ und $2 \dots $				
	5.3	Zusammenfassung der VET-Messungen				
6	Pola	Polarisationseffekte der Fluoreszenz 6				
	6.1	Stoßfreie Polarisation der Fluoreszenz	65			
		6.1.1 Anregung durch linear polarisierte Strahlung	69			
		6.1.2 Anregung durch zirkular polarisierte Strahlung	72			
	6.2	Darstellung durch Zustandsmultipole	74			
	6.3	Einfluß des Kernspins auf die Polarisation				
	6.4	Depolarisation durch RET	82			
		6.4.1 IOS-Scaling der Multipoltransfereffizienz	88			
	6.5	Simulation der Polarisation durch LASKIN	89			
7	Pola	olarisationsaufgelöster Energietransfer				
	7.1	Zeitaufgelöste Fluoreszenz von OH $v' = 2 \dots \dots \dots \dots \dots$	93			
		7.1.1 Skalierung der experimentellen Werte	94			
		7.1.2 Validierung der Polarisationsamplitude	96			
		7.1.3 Dynamik der Depolarisation	98			
		7.1.4 Parameter zur Simulation der Polarisation	103			
	7.2	Zeitintegrierte Fluoreszenz von OH $v' = 1$	105			

		7.2.1	Polarisation spektral aufgelöster Fluoreszenz	106			
	7.3	7.3 Zeitaufgelöste Breitbandfluoreszenz von $v' = 2$					
		7.3.1	Isotrope Fluoreszenz	113			
		7.3.2	Anisotrope Fluoreszenz	117			
8	Fluoreszenz von NO im A-X System 121						
	8.1	Fluore	szenz von NO $v' = 0$	121			
		8.1.1	Bestimmung der Flammentemperatur	123			
		8.1.2	Rotationsstruktur von NO $v' = 0$	124			
	8.2	Zeitau	fgelöste Fluoreszenz von NO $v'=2$	131			
9	Zusammenfassung und Diskussion 13						
	9.1	Polaris	sationseffekte in der OH-Fluoreszenz	137			
	9.2	NO-Fl	uoreszenz	143			
\mathbf{A}	Polarisationsaufgelöste Fluoreszenz von OH 1						
	A.1	Fluore	szenz von OH v'=1 \ldots	145			
	A.2	Zeitau	fgelöste Fluoreszenz von OH v'=2 $\dots \dots \dots \dots \dots \dots \dots$	148			
	A.3	Breitba	and fluoreszenz von OH v'=2 $\dots \dots \dots \dots \dots \dots \dots \dots \dots$	152			
в	Fluoreszenz von NO $v' = 0$ und 2 16						