
Chapter 1

Theory and Instrumental Details

1.1 Principle of Ellipsometry

The measurements described in this thesis were made using spectrally resolved ellipsometry.
While the basic experimental setup of an ellipsometer is relatively simple, the interpretation
of the measured spectra is not trivial.

In ellipsometry, the change in polarization of a light beam upon reflection on a sample
is measured. The basic setup of an ellipsometer is shown in figure 1.1. A light beam from
a white light source or a monochromatic source such as a laser is polarized and incident on
the sample under an angle φ0 with the surface normal. The directly reflected light from the
sample surface is analyzed using a second polarizer. The resulting intensity in dependence
on the analyzer angle is then detected at the detector.

Figure 1.1: Schematic setup of an ellipsometer. Rp, Rs: complex reflection coefficients
for parallel and perpendicular component, respectively; α1, α2: angle of the polarizer and
analyzer; φ0: angle of incidence.

The polarization change is quantified in terms of the ellipsometric parameters Ψ and ∆.
These parameters are related to the sample properties by

(1.1) tan Ψ ei∆ =
Rp

Rs

,
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where Rp and Rs are the complex reflection coefficients for the parallel and perpendicu-
lar polarization component, respectively [6]. The parallel and perpendicular direction are
defined with respect to the plane of incidence, which is the plane defined by the surface
normal and the incident beam. The complex reflection coefficients describe how the linear
polarization component in question changes in amplitude and phase factor due to the inter-
action with the sample. Therefore, Ψ basically describes the relative change in amplitude
of the two components, while ∆ describes the relative change in phase of the two linearly
polarized components.

Ellipsometry is a technique highly sensitive to surface properties. The direct reflection
configuration results in a technique that is not sensitive to misalignment of the sample.
A slight deviation of the real angle of incidence from the expected angle defined by the
position of the ellipsometer’s goniometer arms is immediately recognized by a vanishing
signal at the detector. The surface sensitivity is even more pronounced due to the fact
that the method works at high angles of incidence close to the Brewster angle.

Since the complex reflection coefficients usually depend on the morphological properties
of the sample such as layer thicknesses and interface roughnesses as well as on the optical
parameters of the components making up the system, the interpretation of the ellipsometric
spectra is complicated. In fact, only for the case of a homogeneous, isotropic, and within
the penetration depth infinitely thick sample with a perfect surface can the ellipsometric
parameters be converted analytically to the sample parameters. In this case the complex
refractive index of the sample can be determined. In the case of more complex structured
systems, the right hand side of equation 1.1 is a nonlinear, transcendent equation. It
can therefore not be converted analytically to yield the sample parameters of interest.
In such cases, a model of the system has to be developed and numerical optimization
techniques have to be used to obtain the parameters of the sample from the ellipsometric
measurements.

1.1.1 Maxwell Equations

The basic foundation for the interpretation of ellipsometric data are the Maxwell equations
of electrodynamics [7, 8]. They are given by

~∇× ~H =
1

c

∂ ~D

∂t
+

4π

c
~j

~∇× ~E =
1

c

∂ ~B

∂t
~∇ · ~D = 4πρ

~∇ · ~B = 0 ,

(1.2)

where ~H, ~D, ~E and ~B are the magnetic field strength, the electric displacement density,
the electric field strength, and the magnetic flux density, respectively. The parameter ~j is
the surface current and ρ is the charge density.
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The associated material relations describe the influence of materials other than vacuum
on the electromagnetic wave:

~D = ε ~E

~B = µ ~H

~j = σ ~E .

(1.3)

In the case of non magnetic materials the magnetic permeability µ = 1. It is important
to note that this theory describes only classical macroscopic parameters, e.g. dielectric
function or complex refractive index. A detailed analysis of the scattering processes may
require the use of quantum mechanics.

1.1.2 Mathematical Representation of Polarization

The term polarization refers to the time dependence of the electric field vector at a fixed
point in space. The electric field vector is usually chosen to describe the electromagnetic
wave, because the magnetic field vector is related to the electric field vector by the Maxwell
equations and the interaction of electromagnetic waves with matter is usually largely de-
termined by the electric interaction.

Assume that the electromagnetic wave in question is a monochromatic plane wave
with a direction ~k parallel to the z-axis of the coordinate system. Using the fact that a
monochromatic plane wave may be written as the superposition of two linear polarized
and mutually orthogonal waves

(1.4) ~E(~r, t) =

[
Ex(~r, t)
Ey(~r, t)

]
=

[
|Ex|e−i(~k~r−ωt−δx)

|Ey|e−i(~k~r−ωt−δy)

]
,

it can be shown that in the most general case the endpoint of the electric field vector ~E
traces the outline of an ellipse. The wave is said to be elliptically polarized, as opposed to
e.g. linearly polarized, where the electric field vector stays in a plane [6].

An alternative way to represent the polarization of an electromagnetic wave is the Stokes
vector [6, 7, 9]. The components of this four-dimensional vector S = {S0, S1, S2, S3} are
defined as

S0 = |Ex|2 + |Ey|2

S1 = |Ex|2 − |Ey|2

S2 = 2|Ex||Ey| cos(δy − δx) = 2|Ex||Ey| cos ∆

S3 = 2|Ex||Ey| sin(δy − δx) = 2|Ex||Ey| sin ∆ .

(1.5)

The components of the Stokes vector all have the unit of intensity. It can be seen easily
that only three of its components are independent
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Figure 1.2: Parameters determining the Polarization Ellipse: Azimuth angle Θ, amplitude
A and ellipticity tan ε = b/a. The time dependence of the electric field vector can be
described by superposition of two linearly, along the coordinate axis polarized orthogonal
waves Ex(~r, t) and Ey(~r, t).

(1.6) s2
0 = s2

1 + s2
2 + s2

3 .

The Stokes vector is important in photometric ellipsometry, because they are related
to the intensity at the detector and the ellipsometric parameters Ψ and ∆, as explained in
section 1.1.4.

1.1.3 Jones Vector and Jones Matrix Formalism

A representation of the polarization properties of an electromagnetic wave which is espe-
cially useful when discussing the propagation of polarized light through optical components
is the Jones vector representation [6].

In the Jones vector formalism, the polarization of an electromagnetic wave is represented
by the superposition of two different basis states. A typical choice of basis states are two
orthogonal linear polarizations, but other choices such as two circular polarizations with
different handedness are possible. The choice of basis states is usually guided by the system
of optical elements under consideration, which may make one choice mathematically easier
to handle. In the following, it is assumed that the basis states are two linear polarized
waves oriented along the x and y axis of the coordinate system, respectively.

In ellipsometry only the polarization properties are of interest. Therefore, information
about the absolute time dependence may be suppressed without loss of information. A
complete representation of the polarization state is then given by
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~E =

[
Ex

Ey

]
,(1.7)

with

Ex = |Ex|eiδx , Ey = |Ey|eiδy .(1.8)

The two components are complex numbers, also called phasors. They describe the
amplitude of the two basis vectors and their phase difference. The superposition of these
two components restores the polarization ellipse. In the Jones formalism, optical compo-
nents are described by 2×2 matrices. For example, the effect of a linear polarizer with an
azimuth angle α with respect to the xy-coordinate system on a linear polarized wave with
Jones vector ~Ei is analogous to premultiplying this Jones vector by a matrix given by

(1.9) ~Eo =

[
cos α 0

0 sin α

]
~Ei .

Starting with an input Jones vector Ei, the resulting output Jones vector Eo after a
sequence of optical elements can be obtained by subsequently premultiplying the input
Jones vector Ei with the Jones matrices representing the different optical elements.

1.1.4 Photometric Ellipsometry

Several different ellipsometry setups exist, which differ in the way the ellipsometric pa-
rameters Ψ and ∆ are derived, e.g., null ellipsometers and photometric ellipsometers. The
ellipsometer used for the measurements in this thesis is of the latter type.

Given the simple ellipsometric setup of figure 1.1, the resulting ellipsometric parameters
Ψ and ∆ can be calculated as follows [9].

Using the Jones matrices of 1.1.3 for the polarizers and the sample, the intensity at the
detector is equal to

(1.10) I(α2) =
1

2
(s0 + s1 cos(2α2) + s2 sin(2α2)) ,

where the coefficients sx refer to the Stokes’ vector components. The intensity is periodic
with periodicity 2α2. The Stokes vector components may, therefore, be calculated as the
Fourier coefficients of the intensity by measuring several times at fixed polarizer angle and
variable analyzer angle

s1 = 2

∑
i I(α2i) cos(2α2i)∑

i I(α2i)

s2 = 2

∑
i I(α2i) sin(2α2i)∑

i I(α2i)

.(1.11)
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The ellipsometric parameters Ψ and ∆ are given by

cos 2Ψ = −s1

s0

sin 2Ψ cos ∆ =
s2

s0

(1.12)

Since the ellipsometric parameters are included in expressions cos 2Ψ and sin 2Ψ cos ∆,
the parameter ∆ can only be defined in the range 0◦ ≤ ∆ ≤ 180◦. By usage of an additional
retarder with phase retardation δ, the expression sin 2Ψ cos(∆ + δ) can be measured. In
particular, for δ = 90◦, also the third Stokes vector component s3 can be determined by

(1.13) sin 2Ψ sin ∆ =
s3

s0

,

so that ∆ may be determined without ambiguity in the whole range 0◦ ≤ ∆ ≤ 360◦.
Besides resolving the ambiguity of ∆, the usage of a retarder also solves a problem arising
from very small values of ∆. In this case | cos ∆| ≈ 1, and small errors in the measurement
of cos ∆ lead to large errors in the determination of ∆. By transforming cos ∆ to sin ∆,
the problem is shifted to a region where measurement errors have only a small impact and
are not problematic in the numerical inversion.

1.2 Modelling Ellipsometric Spectra

As mentioned before, the interpretation of ellipsometric spectra usually requires the mod-
elling of the morphological and optical properties of the sample. In the following, the basic
ingredients for the modelling of layered samples, possibly with interface roughnesses, are
described. Firstly, the reflection at a single interface is described and the inversion of the
ellipsometric parameters to the complex refractive index is presented. In the following,
mathematical tools for the modelling of layered systems with isotropic and homogeneous
layers are shown. The effective medium approximation (EFM) for modelling systems con-
sisting of several different constituents and interface roughnesses is introduced in section
1.2.3.

1.2.1 Reflection on a Bulk System - the Fresnel Coefficients

The equations most often used in the modelling of ellipsometric measurements are the
Fresnel coefficients. The Fresnel coefficients describe the change in amplitude and phase
of an electromagnetic wave upon reflection or transmission on a perfectly smooth interface
between two homogeneous and isotropic media.

There are four Fresnel coefficients corresponding to reflection and transmission for elec-
tromagnetic waves polarized parallel and perpendicular to the plane of incidence. They
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can be found by stating the boundary conditions on the continuity of the field components
normal and tangential to the surface:

~n12 ·
(

~D2 − ~D1

)
= 4π~ρ

~n12 ×
(

~E2 − ~E1

)
= 0

~n12 ·
(

~B2 − ~B1

)
= 0

~n12 ×
(

~H2 − ~H1

)
=

4π

c
~j ,

(1.14)

where ~n12 is the unit vector normal to the surface and directed from the first into the
second medium. In the case of vanishing surface charge and current ~ρ and~, these equations
reflect the continuity of the components of ~D and ~B perpendicular to the boundary, and
the tangential components of ~E and ~H. From these boundary conditions the so called
Fresnel equations can be derived [7]:

rp =
Erp

Eip

=
N1 cos φ0 −N0 cos φ1

N1 cos φ0 + N0 cos φ1

rs =
Ers

Eis

=
N0 cos φ0 −N1 cos φ1

N0 cos φ0 + N1 cos φ1

tp =
Etp

Eip

=
2N0 cos φ0

N1 cos φ0 + N0 cos φ1

ts =
Ets

Eis

=
2N0 cos φ0

N0 cos φ0 + Ns cos φ1

,

(1.15)

with the complex refractive indices N0 and N1 of the first and the second medium, respec-
tively. The subscripts r,t and i refer to reflected, transmitted and incident wave, while
the subscripts p and s refer to parallel and perpendicular polarization with respect to the
plane of incidence. The in general complex angle φ1 can be derived as a function of φ0, N0

and N1 by use of Snell’s law [7]

(1.16) N0 sin φ0 = N1 sin φ1 .

In the case of a bulk sample with an infinite thickness when compared to the penetration
depth, the complex reflection coefficients are equal to the Fresnel coefficients. In this case
the ellipsometric equation can be written as [6]

tan Ψ ei∆ =
Rp

Rs

=
rp

rs

.
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By substituting the Fresnel coefficients, the following explicit relation for the complex
refractive index of the bulk medium N1 in terms of the ellipsometric parameters Ψ and ∆
and the angle of incidence φ0 can be found [6]

(1.17) N1 = N0 tan φ0

[
1− 4ρ

(1 + ρ)2
sin2 φ0

]1/2

,

where N0 is the complex refractive index of the surrounding medium, which is usually air
and can be set to 1, while ρ is related to the ellipsometric parameters Ψ and ∆ by 1.1.

1.2.2 Layered systems

Ellipsometry is especially interesting when measuring layered systems and systems with
interface roughnesses. The simultaneous measurement of interference phenomena in both
the amplitude and phase information leads to a technique which can be used to characterize
parameters such as layer thicknesses with high precision. In the following the standard
ambient/film/substrate system is described as well as a general approach for modelling
stratified planar isotropic systems. In addition, the effective medium approximation for
modelling mixtures of optically different media and roughness effects is presented. Usually,
the resulting formulae cannot be analytically inverted for the sample parameters, especially
the layer thicknesses. Therefore numerical fit procedures have to be employed to invert
them.

1.2.2.1 Ambient/Film/Substrate system

Figure 1.3 shows the paths taken by a light beam in the classic ambient/film/substrate
model consisting of a homogeneous, isotropic film sandwiched between semi infinite ho-
mogeneous, isotropic ambient and substrate. The film layer leads to multiple internal
reflections of the beam inside the film. These reflections lead to additional reflexes beside
the main reflection from the film surface. The partial waves leaving the sample can inter-
fere with each other, provided that the film’s thickness and, therefore, the resulting lateral
separation is not too large.

The resulting complex reflection coefficients are a function of the Fresnel coefficients of
the different interfaces and the thickness of the film. They can be found by summing up
the Fresnel coefficients of the paths taken by the different partial waves:

(1.18) Rx = r01x + t01xt10xr12xe
−i2β + t01xt10xr10xr

2
12xe

−i4β + . . . ,

where the coefficients rx and tx are the Fresnel coefficients of equation 1.15 for reflection
at and transmission through the interface, respectively. The subscript x stands for either
p- or s-polarization with respect to the plane of incidence.

The parameter β is called the phase angle. It is the phase shift of the electromagnetic
wave due to travelling a distance within the film and is therefore related to the thickness
d of the film, the angle of incidence φ0 and the complex refractive index of the film N1.

20



1.2. Modelling Ellipsometric Spectra

Figure 1.3: Interference in an ambient/film/substrate system

(1.19) β = 2π
d

λ
(N2

1 −N2
0 sin2 φ0)

1/2 ,

Equation 1.18 is an infinite geometric series and can be reduced to

(1.20) Rx =
r01x + r12xe

−i2β

1 + r01xr12xe−i2β
.

These are the so-called Airy formulae [7]. From these equations expressions for the ellip-
sometric parameters according to eq. 1.1 can be derived:

(1.21) tan Ψ ei∆ =
Rp

Rs

=
r01p + r12pe

−i2β

1 + r01pr12pe−i2β

1 + r01sr12se
−i2β

r01s + r12se−i2β
.

1.2.2.2 Stratified planar isotropic systems

A uniform approach for the analysis of ellipsometric spectra from stratified planar isotropic
systems is based on a 2 × 2-matrix formalism [6]. The influence of the sample on the
polarization of the electromagnetic wave is described by a 2× 2 scattering matrix S

S =

[
S11 S12

S21 S22

]
.

Let light be incident on a layered structure that is stratified along the z-axis. The scattering
matrix relates the forward-travelling wave E+(z) and backward-travelling waveE−(z) at
two planes z′ and z′′
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