
Chapter 1

Introduction

1.1 Motivation and History

The numerical simulation of hysteresis effects in ferromagnetic material plays an important
role in many technological applications, which have been studied in the last decades. The
quality of hysteresis models, measured as the correspondence of the simulated and experi-
mental results, has been substantially improved in the last years. Careful implementation
and increasing computer resources nowadays enable the application of hysteresis models
within electromagnetic field simulations. Up to now, hysteresis models and their introduc-
tion in electromagnetic field simulation are still subject of ongoing research. Two basic
ingredients are required here: an accurate hysteresis model, combined with an efficient
numerical method for electromagnetic field simulation.

Models for the hysteresis of ferromagnetic materials based on the mutual interaction of
the magnetic particles, were first developed by J.A. Ewing in 1890, who assumed that the
magnetic dipoles can be freely turned according to the interactions between the magnetic
moments and the interaction between the neighboring magnetic dipoles as well. On the
basis of the experiment by Ewing, the hysteresis of ferromagnetic materials was expected
to have qualitative and quantitative characteristics. The theory of quantum mechanics
introduced by N. Bohr opens the way for simulating magnetic materials and moments
on the basis of quantum theory. The analysis of the microstructure of materials and the
physical interpretation of crystal structures from the point of magnetic field led to the
theory of spin dynamics and the discovery of the optical properties of magnetic materials.
The investigation of the microstructure of magnetic materials motivates the realization of
weak magnetic materials and magnetic alloys with special properties. The next period of
research is characterized by the development of different models based either on a math-
ematical or on a physical approach. First realization of dynamical hysteresis models for
magnetic materials was presented by Y. Saito between 1982 and 1990 and M.L. Hodgdon
in 1988. The Langevin model of paramagnetic materials based on Boltzmann statistics
and the Weiss theory resulted in the Jiles-Atherton hysteresis model [23] [24] [25] in 1983
for the representation of the energy loss during the domain wall motion. The studies
of Ewing were extended by several researchers and accumulated in the Preisach model
[29]. Based on the studies of Preisach and Everett, a mathematical model for hystere-
sis based on a statistical characterization of material properties was developed by M.A.
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Krasnoselskii and A.V. Pokrovskii in 1983. From this time on, a powerful development in
the Preisach model started and resulted e.g. the books and papers of E. Della Torre [5],
I.D. Mayergoyz [16], A. Visintin [28], O. Bendda, A. Ivanyi [17] and G. Bertotti [4] which
are now considered standard reference. The first hysteresis model which also represents
the vectorial property of the particle magnetization was the Stoner-Wohlfarth model [22]
developed in 1947. A new generation of vector models was introduced by E. Della Torre
[18] in 1998 to simplify the mathematical model considering the physical characteristics
of ferromagnetic material.

Currently, research on hysteretic material and on hysteresis model is widely spread. Hys-
teretic materials are applied in many electrotechnical devices. New materials, e.g. com-
pound materials, powder materials, rare-earth permanent magnet materials are applied
which require increasingly accurate and efficient hysteresis models. On the basis of mi-
croscopic investigations of magnetic materials, the simulation of the nonlinear hysteresis
characteristics can be realized by numerical techniques. With the development of the nu-
merical computation in the twentieth century, discretization techniques for field simulation
are classified as Finite Element Method (FEM), Boundary Element Method (BEM), Finite
Difference in Time Domain (FDTD), and Finite Integration Technique (FIT) etc.. Hystere-
sis models can be introduced in electromagnetic field simulation based on a discretization
of the geometry by arising a hysteresis model for each volumetric entity representing a
piece of hysteretic material.

The FIT, presented by Weiland [51], [52], [53] in 1977, was first developed for frequency
domain problems starting about three decades ago and later completed to a generalized
scheme for the entire application range of Maxwell’s equations. The FIT transfers the con-
tinuous Maxwell’s Equations into a set of matrix equations, each of which is the discrete
analogue of one of the original integral equations. The algebraic equations representing
Maxwell’s equations in the computational grid are called Maxwell-Grid-Equations. Impor-
tant topological properties such as the curl-freeness of gradient fields and the divergence-
freeness of curl fields carry over from the continuous level to the discrete level. The method
allows different formulations for the discrete problem not only in frequency domain but
also in time domain, which provides more flexibility to the numerical simulation scheme.
These attractive features of the FIT motivated the numerical simulation of hysteresis
effects in ferromagnetic materials by introducing hysteresis models into the FIT.

1.2 Overview

After introducing the motivation and the development history of hysteresis models and nu-
merical computation for electromagnetic fields, the ferromagnetic hysteresis is introduced
in Chapter 2. Starting from Maxwell’s equations, the physics of magnetism including the
domain structure in magnetic materials and the description of hysteresis loops during the
magnetization process is introduced firstly. Then the Preisach models, classified as clas-
sical Preisach model, generalized Preisach model and vector model are shortly recalled.
Then the Jiles-Atherton model is briefly introduced as a Langevin type hysteresis model.

In order to project Maxwell’s equations from continuous space onto a finite grid space and
to implement hysteresis models in electromagnetic field simulation based on the discretiza-
tion of the finite grid space, the FIT is introduced in Chapter 3. The introduction of the
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Finite Integration Implicit Time Domain formulation (FI2TD) for magnetoquasistatic
field problems prepares for hysteretic simulation.

The modelling and implementation of the hysteresis is introduced in Chapter 4. Two dif-
ferent models of hysteretic ferromagnetic material behavior are given: the Preisach model
and the Jiles-Atherton model. The magnetic polarization update scheme and the hysteretic
nonlinear update scheme are introduced combining the two hysteretic ferromagnetic mate-
rial modelling and the Finite Integration Implicit Time Domain formulation, respectively.
The polynomial interpolation from the measured first-order transition curves is described
in order to numerically implement the Preisach model and the inverse Preisach model. The
computation of hysteretic losses is discussed and given by the integration of the hysteresis
loops. The Jiles-Atherton model is implemented by its inverse form in the hysteretic non-
linear update scheme. Although scalar Preisach models have been increasingly accurate
and efficient in describing material behavior, in many cases the magnetizing processes
is vectorial in nature. The simplified vector model as one of the most computationally
efficient models is implemented and compared with the corresponding scalar model. A
hybrid method combining the solutions from the overrelaxed polarization method and the
underrelaxed Newton method at each iterative cycle is implemented and discussed. The
purpose of the hybrid Newton-polarization method is to increase the robustness of the
nonlinear iteration, without loosing the quadratic speed of convergence in the vicinity of
the solution. A 3D transient hysteretic test problem is used for assessing the properties
of all of the modelling and implementation methods.

The selected example of Benchmark problem TEAM 32 as an application of the numerical
simulation of hysteresis effects in ferromagnetic material is demonstrated in Chapter 5.
Two different supply cases are used for assessing the properties of the modelling and
implementation of the hysteresis for magnetoquasistatic field problems.

The thesis is concluded with a summary in Chapter 6.
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Chapter 2

Ferromagnetic Hysteresis

Ferromagnetic hysteresis is an important behavior of magnetic materials. Its phenomena
can affect all applications of magnetic cores from electrical machines to transformers. The
physics of magnetism responsible for hysteresis and the adequate mathematical tools to its
description are the basis for the theoretical and the numerical study of hysteretic effects
in ferromagnetic material. The physics of magnetism has been introduced with various
approaches in different works by Bozorth [1], Chikazumi [2], Jiles [3], Bertotti [4] etc.. The
Preisach model and the Jiles-Atherton model are the most popular mathematical models
for the description of hysteretic phenomena. They have been developed and implemented
in many numerical simulations for years.

In this chapter, on the bases of Maxwell’s equations, the physics of magnetism, ranging
from pure theory of the domain structure in magnetic substances to a plain description of
hysteresis loops during the magnetization process, is introduced. As the applied hysteretic
model in this thesis work, the Preisach model is recalled in a short summary. The classical
Preisach model is described concerning its geometric interpretation, the determination of
the distribution function and the numerical implementation. After the discussion of the
main properties of the Preisach model, some modified Preisach models, generalized from
classical one are shortly mentioned, which overcome the certain limitation of the classical
Preisach model. The hysteretic losses are also discussed here. The vector Preisach model
is shortly introduced, which will be further discussed in Chapter 4 as well. The Jiles-
Atherton model is a Langevin type hysteresis model. It incorporates physical principles
in the determination of five material parameters according to the experimental data. The
Jiles-Atherton model will be further studied in Chapter 4.

2.1 Maxwell’s Equations

Maxwell’s equations are the fundamental equations to describe macroscopic electromag-
netic phenomena in continuous space. They reflect the relation between the electric field
values (field strength �E and flux density �D) and magnetic field values (field strength �H and
flux density �B). They can be written in integral form for arbitrary faces A and volumina
V and their respective boundaries ∂A and ∂V for non-moving geometries as:
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∫
∂A

�E(�r, t) · d�s = −
∫∫
A

∂

∂t
�B(�r, t) · d �A, (2.1)

∫
∂A

�H(�r, t) · d�s =
∫∫
A

(
∂

∂t
�D(�r, t) + �J(�r, t)

)
· d �A, (2.2)

∫∫
∂V

�B(�r, t) · d �A = 0, (2.3)

∫∫
∂V

�D(�r, t) · d �A =
∫∫∫

V

q(�r, t) · dV. (2.4)

Here, equation (2.1) takes into account Faraday’s law and equation (2.2) is called Ampère’s
law. The third equation (2.3) states that the total magnetic flux crossing any closed,
regular surface has zero balance and the fourth equation is called Gauss’s law. Maxwell’s
equations can be written in differential from as well, the differential form is derived by
applying the theorems of Gauss and Stokes to the integral forms [49].

The current density J(�r, t) in the equation (2.2) is composed of

�J(�r, t) = �Jk(�r, t) + �Jq(�r, t) + �Ji(�r, t), (2.5)

where the conduction current density �Jk(�r, t) = κ�E arises in materials with electric con-
ductivity κ from the existing electric field strength; the imposed current density �Ji(�r, t)
expresses the excitation of the problem and is independent of all field forces; the current
density �Jq(�r, t) is the current contribution of free charges with the charge density q moving
at the speed �v.

The physical characteristics of materials are described by constitutive relations, which
relate the electric and magnetic flux densities ( �D and �B) to the electric and magnetic field
strengths (�E and �H). In the general case, the constitutive equations are

�D = ε0
�E + �P , (2.6)

�B = µ0( �H + �M), (2.7)

where the electric polarization �P and the magnetization �M of the material can be used
in dispersive, anisotropic, nonlinear and hysteretic cases. For linear materials, the electric
polarization is �P = ε0χe

�E, where χe is the electric susceptibility, and the magnetization
is �M = χm

�H, with the magnetic susceptibility χm. In the more general case, we have

�P = ε0χe
�E + �Pr, (2.8)

�M = χm
�H + �Mr. (2.9)

The description of the material characteristics in the electromagnetic field calculation
is extended by the independent permanent polarization �Pr and independent permanent
magnetization �Mr. The physical characterization of magnetic materials is the general
subject of this thesis and will be discussed in the following sections.
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2.2 Physics of Magnetism

2.2.1 Magnetic Materials

There are various types of magnetism. Each of them is characterized by its own magnetic
properties. The various magnetism will be classified in this subsection and their magnetic
structures and magnetic properties will be described.

The magnetic flux density �B and the magnetization vector �M are commonly used in
engineering application to describe the magnetization. The relationship between �B and
�M is

�B = µ0( �H + �M), (2.10)

where µ0 is the permeability in vacuum and �H is the magnetic field intensity. The relation
between the magnetic field intensity �H and the magnetization vector �M can be represented
by a linear operator, a nonlinear operator, or a hysteresis operator. However, for linear
materials, the relation between the magnetization �M and the magnetic field intensity �H
can be expressed by

�M = χm
�H, (2.11)

where χm is the magnetic susceptibility. The observed value of the magnetic suscepti-
bility ranges from 10−5 for soft magnetic materials to 106 for hard magnetic magnets.
The susceptibility is not necessarily constant. It can vary as the function of the applied
field. Moreover, the susceptibility does not need to be scalar, it can be also a tensor, to
represent anisotropic material, and in some cases it takes negative values as well, e.g. in
superconductors. Substituting (2.11) into (2.10), we have

�B = µ0(1 + χm) �H = µ0µr
�H. (2.12)

The relation between the magnetic induction �B and the applied field �H can be expressed
by the relative permeability µr.

On the basis of the magnetic susceptibility, the magnetic behavior of materials can be
classified as diamagnetism, paramagnetism, antiferromagnetism, ferrimagnetism and fer-
romagnetism [2].

1. Diamagnetism is a weak magnetism in which a magnetization is exhibited opposite to
the direction of the applied field. The magnetic susceptibility χm is negative and order
of magnitude is in general about 10−5. Examples of diamagnetic materials are some rare
gases and nonmetallic elements, but some metals, e.g. copper (Cu), silver (Ag), zinc (Zn)
and gold (Au) also belong to the diamagnet materials.

2. Paramagnetism is a weak magnetism as well. In paramagnetism, the magnetization �M
is proportional to the magnetic field �H. Paramagnetic materials contain magnetic atoms
or ions whose spins are not compensated. At finite temperatures, the spins are thermally
agitated and take random orientations. According to the Curie law, the susceptibility
of paramagnetic materials is inversely proportional to the temperature. In the param-
agnetic case, the magnetization �M is increasing with the applied field �H. The magnetic
susceptibility χm is positive and its order of magnitude is 10−5 to 10−3. Examples of
paramagnetic materials are oxygen (O2), aluminum (Al), manganese (Mn) and the alloys
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of the rare earth elements from lanthanum (La) to ytterbium (Yb), and iron (Fe), cobalt
(Co) and nickel (Ni).

3. Antiferromagnetism is similar to paramagnetism in the sense of exhibiting a small posi-
tive susceptibility. The susceptibility depends on the temperature, as characterized by the
occurrence of a kink in the χm−T curve at the Néel temperature TN (Fig. 2.1 B). Accord-
ing to the interaction between the magnetic moments, an antiparallel spin arrangement is
established, in which the plus and minus spins completely cancel each other (Fig. 2.1 A).
In such an antiferromagnetic arrangement of spins, the tendency to be magnetized by the
external field is opposed by a strong negative interaction acting between plus and minus
spins. If there is no external field, the opposite directed moments completely compensate
each other. When applying an external field, the antiferromagnetic material proves weak
magnetic properties with small positive susceptibilities. The compounds of manganese
(MnO, MnS), vanadium (VO2) and iron (FeS2) belong to the antiferromagnetic materials.

T
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(A) (B)

0
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1
χm

Figure 2.1: Antiferromagnetic material, (A) Configuration of magnetic spins, (B) Tem-
perature dependence of the susceptibility.

4. Ferrimagnetism is the term proposed by Néel2 to describe the magnetism of ferrites. In
these substances, magnetic ions occupy two kinds of lattice sites, the spins on one site point
in the plus direction, whereas those on the other site point in the minus direction. Since the
number of magnetic ions and also the magnitude of spins of individual ions are different on
the both sites, such an ordered arrangement of spins gives rise to a resultant magnetization,
i.e. spontaneous magnetization. As the temperature increases, the arrangement of the
spins is disturbed by thermal agitation. Above the Curie point TC , the substance exhibits
paramagnetism, and the susceptibility decreases with increase of temperature (Fig. 2.2).
Ferrimagnetism is observed in various kinds of magnetic compounds. In these materials
the divalent metal ions can be found as manganese (Mn), cobalt (Co), nickel (Ni), zinc
(Zn). The ferrimagnetic garnets are the group of minerals, where the divalent elements
are the rare earth materials, such as cadmium (Cd), terbium (Tb), yttrium (Y).

5. In the case of ferromagnetism, the spins are aligned parallel to one another as a result
of a strong positive interaction acting between the neighboring spins (Fig. 2.3(A)). As
the temperature increases, the arrangement of the spins is disturbed by thermal agitation,
thus resulting in a temperature dependence of spontaneous magnetization (Fig. 2.3(B)).
Above the Curie point, the susceptibility obeys the Curie-Weiss law, which states that
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1/χm rises from zero at the Curie point TC and increases linearly with temperature as
shown in Fig. 2.3(C).
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Figure 2.2: Ferrimagnetic material, (A) Configuration of magnetic spins; (B) Spontaneous
magnetization; (C) Temperature dependence of the susceptibility.
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Figure 2.3: Ferromagnetic material, (A) Configuration of magnetic spins; (B) Spontaneous
magnetization; (C) Temperature dependence of the susceptibility.

The interior of the ferromagnetic material is divided into many magnetic domains, each
of which is spontaneously magnetized. The domain sizes change from a few microns to
perhaps millimeters for many ferromagnetic materials. In the domains, a large number of
atomic moments, i.e. 1012 to 1018, are aligned parallel, so that the magnetization within
the domain is almost saturated. Since only the direction of the domain magnetization is
varying from domain to domain, the resultant magnetization can be changed from zero to
the value of saturation magnetization.

The magnetic properties of a ferromagnetic material are represented by the plot of the
magnetization �M or magnetic flux density �B at various field intensity �H, which is shown
in Fig. 2.4. In the ferromagnetic materials, the orientation of the domains is randomly
distributed. In demagnetized state at absence of the applied field the magnetization is zero


