## <

## Reto Knaack (Autor) Global Evolution of Magnetic Fields in the Photsphere of the Sun During Cycles 20-23


https://cuvillier.de/de/shop/publications/2543

Copyright:
Cuvillier Verlag, Inhaberin Annette Jentzsch-Cuvillier, Nonnenstieg 8, 37075 Göttingen, Germany
Telefon: +49 (0)551 54724-0, E-Mail: info@cuvillier.de, Website: https://cuvillier.de

## Contents

Abstract ..... xiii
Zusammenfassung ..... xv

1. Setting the scene ..... 1
1.1 Relevant observations ..... 1
1.2 A brief introduction to MHD ..... 7
1.2.1 Basic equations ..... 7
1.2.2 The induction equation ..... 9
1.3 Kinematic dynamos ..... 10
1.3.1 Flux tubes in the convection zone and tachocline ..... 11
1.3.2 Mean-field MHD ..... 14
1.3.3 The kinematic $\alpha \Omega$ dynamo ..... 17
1.3.4 Dynamo waves ..... 19
1.3.5 Alpha-quenching ..... 20
1.4 North-south asymmetries and quasi-periodic variations ..... 21
1.5 Outline of the thesis ..... 23
Bibliography ..... 25
2. North-south asymmetry of the solar magnetic field ..... 31
2.1 Abstract ..... 31
2.2 Introduction ..... 32
2.3 Data and data analysis ..... 33
2.4 Results and Discussion ..... 35
2.4.1 The magnetic flux asymmetry $\Gamma_{\Phi}$ ..... 35
2.4.2 The sunspot area asymmetry $\Gamma_{A}$ ..... 37
2.5 Summary and conclusions ..... 41
Bibliography ..... 43
3. Evolution and rotation of magnetic fields ..... 45
3.1 Abstract ..... 45
3.2 Introduction ..... 46
3.3 Data and reduction procedure ..... 51
3.3.1 Butterfly diagrams ..... 51
3.3.2 Time series analysis ..... 53
3.4 The low frequency range $1 \mathrm{nHz} \leq \nu \leq 30 \mathrm{nHz}$ ..... 55
3.4.1 The total magnetic flux ..... 55
3.4.2 The net magnetic flux ..... 62
3.5 The intermediate frequency range $30 \mathrm{nHz} \leq \nu \leq 120 \mathrm{nHz}$ ..... 64
3.6 The high frequency range $390 \mathrm{nHz} \leq \nu \leq 470 \mathrm{nHz}$ ..... 70
3.6.1 Rotation frequencies in the southern hemisphere ..... 71
3.6.2 Rotation frequencies in the northern hemisphere ..... 81
3.7 Possible $r$-modes signatures in the magnetic flux ..... 84
3.8 Conclusions ..... 89
Bibliography ..... 93
4. Spherical harmonic decomposition ..... 101
4.1 Abstract ..... 101
4.2 Introduction ..... 102
4.3 Data and reduction procedure ..... 105
4.3.1 Data ..... 105
4.3.2 Data analysis ..... 107
4.4 Results ..... 111
4.4.1 Time series and power spectra for axisymmetric modes $m=0$ ..... 111
4.4.2 Time series and power spectra for non- axisymmetric modes $m>0$ ..... 121
4.5 Discussion ..... 128
Bibliography ..... 135
5. Concluding remarks ..... 139
Bibliography ..... 141
A. Zeeman Effect ..... 143
B. Spherical harmonics ..... 147
Bibliography ..... 151
Curriculum vitae ..... 153
Acknowledgements ..... 155
