
1 Introduction

The invention of the transistor in 1948 by Bardeen, Brattain, and Shockley marks the advent of
the semiconductor age. In retrospect, however, the most significant step was taken in 1954, when
Texas Instruments introduced silicon as a substrate. This paved the way for the production of field
effect transistors, which had already been proposed by Lilienfeld in 1926 and by Heil in 19341: the
surface of silicon can easily be oxidised to SiO2, the very good insulating properties of which make
it an ideal gate oxide. In the late 1950s, Fairchild semiconductor placed several transistors on one
piece of silicon: the first integrated circuit was devised. Since then, semiconductor technology has
advanced rapidly, the number of transistors per chip being doubled every 18-24 months, while the
price per transistor is halved [Moo65]. Current state-of-the-art microprocessors incorporate over
100 million transistors (in 2004) at feature sizes of about 100 nm, requiring extremely complex
processing technology. In a few years time, the devices will be scaled down to the size of atoms,
thus limiting further integration.
Spintronics, in which conventional charge-based electronics is augmented by use of the spin de-
gree of freedom, provides many new applications and possibilities, and possibly also answers
to some challenges of the semiconductor industry. Fuelled by the industrial success of metal-
based spintronic systems, such as harddisk read heads based on the giant magnetoresistance effect
[Bai88, Bin89], or magnetic memory based on magnetic tunnel junctions [Miy95, Moo95], inter-
est in the behaviour of the electron spin in semiconductor systems has grown rapidly over the last
decade. Many devices have been proposed, combining the advantages of metal-based spin systems
with the tunability of semiconductors [Pri95, Bal00, Wol01, Aws02]. One prominent device is the
spin-transistor proposed by Datta and Das in 1990 [Das90]. Here, two spin-aligners (e.g. ferro-
magnets) are positioned at either end of a semiconducting channel. One spin-aligner injects spin
polarised current into the semiconductor channel, through which the current passes while experi-
encing tunable spin-precession. The second spin-aligner detects the spin orientation at the far side
of the channel. All three processes involved, spin-injection, spin-control, and spin-detection, prove
to be challenging on their own. However, insight into all three processes has been gained in the
last few years: spin-polarised currents have successfully been injected into semiconductors from
ferromagnetic metals [Ham99, Zhu01] and semiconductors [Ohn99, Fie99]. Calculations [Ras00]
and experiments [Han02] even show that the injection efficiency can be significantly increased by
placing tunnel barriers at the ferromagnet/semiconductor interface. In the experiments mentioned
above, optical detection of spin-polarised currents was demonstrated. Recently, even successful
electrical detection of spin-polarisation has been reported [Hu01, Mei02, Ham02].
In narrow-gap III-V semiconductors, spin-precession in the semiconductor channel can be

1Julius Lilienfeld proposed a metal-semiconductor based device (MES-FET), and Oskar Heil proposed the metal-
oxide semiconductor device (MOS-FET) commonly used today.
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controlled via the mechanism of so-calledRashba spin-orbit interaction[Ras60, Ras84]: breaking
of symmetry results in lifted spin degeneracy in the semiconductor channel, and the spin states| ↑〉
parallel and| ↓〉 antiparallel to a local spin-basis~BR differ in energy. While moving through the
channel, an electron in the state|s〉=| ↑〉+| ↓〉 precesses around the axis defined by~BR [Das90, Z̧04].
The speed of the precession depends on the so-called Rashba parameterα. Two major contribu-
tions toα can be identified, namely the electric field across the channel as well as the channel
boundaries [Eng96, Eng97, Sch98]. By applying a gate voltage, the Rashba parameter can be
tuned in various materials [Nit97, Hu99, Mat00, Kog02, Sch04]. In most cases,α was determined
from Shubnikov-de Haas (SdH) oscillations in magnetic fields of several Tesla. However, these
Rashba parameters do not necessarily agree with those at the near-zero magnetic fields, at which
all proposed spintronic devices operate [Sch01, Sch02].
Weak antilocalisation (WAL) is well suited to determine the Rashba parameter at near-zero mag-
netic fields [Kna96, Kog02]. WAL originates from interference of time-reversed electron paths in
two-dimensional electron systems. Applied magnetic fields destroy WAL, and a distinct signature
in the magnetoconductance is observed which can be used to determineα. As the time-reversed
paths arise from scattering, weak antilocalisation is only observed in the regime of diffusive trans-
port. However, the interference effects causing WAL can also be used to determine the Rashba
parameter at higher electron mobilities: the low-field magnetoresistance of specifically designed
interferometers exhibits Al’tshuler-Aronov-Spivak (AAS) oscillations, whose amplitude depends
on the strength ofα [Kog04].
Tuning of the Rashba parameter is usually accompanied by a change in carrier density. Devices
that, in addition to a front-gate, feature a back-gate below the channel, may provide a solution to
this problem. The combination of front-gate and back-gate should enable independent control of
the carrier density and the Rashba parameter [Gru00].
The work of this thesis addresses four of the topics above. First, the effect of large external mag-
netic fields on the Rashba parameter is investigated: the value ofα is determined both by WAL
and by SdH oscillations for p-type InAs single crystals and for InAs/In0.75Ga0.25As based het-
erostructures. Second, samples with ingrown back-gates are used to control the Rashba parameter
independent of the carrier density. Third, the Rashba parameter is determined in low magnetic
fields for a very wide range of carrier densities using WAL and AAS oscillations. Fourth, the inter-
play of the field and boundary contributions to the Rashba parameter are studied in samples with
and without an intermediate layer at one boundary of a quantum well.
The thesis is structured as follows: the second chapter introduces spin-orbit interaction in III-V
semiconductors, followed by an an overview of the effects used to determine and quantify this.
Chapter 3 summarises the techniques used in sample processing and in transport experiments. Fol-
lowing this, Chapter 4 presents the results obtained in low and high magnetic fields on p-type
InAs single crystals. Chapter 5 shows the measurements on heterostructures with an InAs chan-
nel and an ingrown back-gate. Then, in Chapter 6, measurements of AAS oscillations are shown,
from which α is determined for a wide range of carrier densities. With these measurements, the
interplay between the field and the boundary contribution is demonstrated for four different het-
erostructures with an InGaAs/InAlAs channels. This thesis closes with an outlook and conclusions
in Chapter 7.
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In general, III-V semiconductors crystallise in the zinc-blende type lattice structure. Due to the
inversion asymmetry of the crystal system, the spin degeneracy in the conduction band is lifted in
the absence of external magnetic fields, and so-called zero-field spin-splitting occurs. This chapter
gives an overview of both the physical origin of this zero-field spin-splitting in a two-dimensional
electron gas (2DEG) and the phenomena used to quantify spin-splitting in transport experiments.

2.1 Zero-field spin-splitting

The spin degeneracy of electronic states in a 2DEG is lifted by breaking symmetry, either in time
or in space [Rös89]. Time-reversal symmetry can be broken by an external magnetic field, re-
sulting in the Zeeman effect [Zee97]. This thesis focusses on the breaking of spatial symmetry
and the resulting so-called zero-field splitting that persists even in the absence of applied magnetic
fields. The three main causes of this are thebulk inversion asymmetry(BIA), structure inver-
sion asymmetry(SIA), and interface inversion asymmetry(IIA). The relative strengths of these
depend on the choice of materials, dimensions, and boundaries of the channel and the 2DEG
[Lom88, Ver97, Eng97].

2.1.1 Bulk inversion asymmetry

Unlike the diamond lattice structure of silicon, the zinc-blende lattice of III-V semiconductors
lacks spatial inversion symmetry [Car88]. This inversion asymmetry leads to a spin-splitting that
can be described by [Dre55, Pik95]:

ĤBIA = γ[σxkx(k2
y−k2

z)+σyky(k2
z−k2

x)+σzkz(k2
x−k2

y)]. (2.1)

Here,γ is a material-dependent constant1, σi are the Pauli matrices andki the wave vectors, for
i = x,y,z. In the case of a 2DEG, electrons are confined to a two-dimensional plane of motion.
This gives rise to linear terms, in addition to the cubic ones, in the in-plane wave vector~k‖ . For

confinement in direction of the z-axis this wave vector is given by~k‖ = (kx,ky) and Eq.(2.1) results
in [Kna96, Min04]:
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with 〈k2
z〉 being the mean square of the electron momentum in direction of the confinement.

1Some researchers refer toγ as the Dresselhaus parameter.
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Fig. 2.1: Orientation of the local magnetic field caused by BIA for a 2DEG confined by a quan-
tum well in [001] direction (a) and of the local magnetic field caused by SIA (b) according to
[Win04]. Note that~BBIA is anisotropic in~k‖ = (kx,ky) while ~BSIA is not. (c) Sketch of the dis-
persion relationsE↑,↓(k‖) in the presence of SIA. The indices↑ and↓ correspond to the two spin
eigenstates of~BSIA, andEF denotes the Fermi energy. The zero-field splitting∆0 of the energy
and∆k of the wave vector between the two spin conduction-subbands are displayed.

The above contribution to zero-field spin-splitting is often called eitherDresselhaus termafter the
author of the original publication [Dre55], orbulk inversion asymmetry (BIA)as it stems from the
bulk semiconductor lattice, or simplyk3 termdue to the cubic order dependency on the wave vector
k as is the case in bulk systems. Zero-field spin-splitting can be described by a local magnetic field
that lifts spin degeneracy. The orientation of this local magnetic field is shown in Fig. 2.1(a) for
the [001] plane of zinc-blende type semiconductors. From this and Eq.(2.2) it is easy to see that
BIA is anisotropic in~k|| and only affects electrons with finite~k||, i.e. electrons in motion in the 2D
plane.
The strength of the term linear in~k‖ is influenced byγ but is also related to the thickness of the
quantum welld via 〈k2

z〉 ∼ d−2. As only BIA shows an explicit dependence on the thickness of
the quantum well, this can be used to determine the relative strength of BIA [Luo90]. BIA is
the dominant origin of zero-field spin-splitting in wide-gap semiconductors such as AlAs. With
decreasing bandgap, SIA becomes dominant and BIA can be neglected as is the case for InAs or
InGaAs [Sch98, Mat00].

2.1.2 Structure inversion asymmetry

The confinement of electrons in a 2DEG is generally due to a quantum well. Usually, band offsets
of the boundary materials or applied voltages lead to an asymmetry of this well. The breaking
of spatial symmetry results in lifted spin degeneracy, which can be exemplified as follows: the
asymmetric potential well effects an electric field~E =−~∇ϕ, wherebyϕ denotes the macroscopic
electrical potential across the well. When passing through this field, the conduction electrons
interact with~E : however, due to the Lorentz transformation,~E appears as a magnetic field~BSIA

when observed from the reference frame of a moving electron. The local magnetic field~BSIA is
always perpendicular to both~E and to the vector of electron motion, as can be seen in Fig. 2.1(b).
It can be understood as the origin of spin-splitting analogous to an external magnetic field causing
the Zeeman effect. For a quantum well confined in the direction of the z-axis, the resulting spin-
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splitting is described by [Ras60, Ras84]:

ĤSO = α[~σ ×~k] · êz,

= α(σxky−σykx). (2.3)

In this equation~σ denotes the vector of Pauli-matrices,~k is the electron wave vector and ˆez is a unit
vector parallel to the electric field~E . The spin-orbit interaction parameterα, also called the Rashba
parameter, indicates the strength of the spin-orbit interaction and depends on the asymmetry of
the quantum well. Assuming parabolic conduction bands, Eq.(2.3) yields the following energy
dispersion relations:

E↑(~k‖) = Ei +
h̄2k2

‖
2m∗ −α|~k‖|, E↓(~k‖) = Ei +

h̄2k2
‖

2m∗ +α|~k‖|, (2.4)

whereEi is the respective subband ground-state energy and the indices↑ and↓ correspond to the
states| ↑〉 and | ↓〉 parallel to the two eigenvectors of the spin-basis system constituted by~BSIA.
Spin degeneracy is lifted in the absence of external magnetic fields, so SIA also contributes to
zero-field spin-splitting. Fig. 2.1(c) shows a sketch of the two energy dispersions described by
Eq.(2.4). The wave-vectors of the two spin orientations,k↑ andk↓, differ for any given energy, and
their difference can be derived from Eq.(2.4) to be:

∆k = k↑−k↓ =
2m∗α

h̄2 . (2.5)

The electron wave vector~k is associated with the phaseψ according toψ ∼ ei~k~r . In the presence
of SIA the spin eigenstates| ↑〉 and| ↓〉 will dephase with respect to each other, and mixed states
will experience spin precession. An especially interesting case occurs when the spin is of an equal
superposition of the two spin basis states, i.e.1√

2
(| ↑〉+ | ↓〉). The spin then precesses in the plane

defined by~E and~k, whereby the angle of precession is given by [Dat90]:

θ = ∆k L =
2m∗αL

h̄2 , (2.6)

with L being the channel length2. Because the spin’s precession depends on the motion of the elec-
tron through the crystal lattice, the precession is often referred to asspin-orbit interaction. Tunable
spin-orbit interaction is necessary for tunable spintronic devices such as the spin-transistor [Dat90].
In a given device, tunability can be achieved by changingα, e.g. by changing the asymmetry of
the potential well.
In the case of parabolic band structure, the Rashba parameterα also gives the correlation between
the strength of zero-field spin-splitting∆0 and∆k, as can be derived from Eq.(2.3):

∆0 = 2α∆k. (2.7)

A graphic description of these parameters is included in Fig. 2.1(c). The Rashba parameter can be
described as [dAeS94, Eng96, Sch98]:

α =
h̄2Ep

6me

〈
Ψ

∣∣∣∣ d
dz

(
1

E−EΓ7−ϕ(z)
− 1

E−EΓ8−ϕ(z)

)∣∣∣∣Ψ〉
, (2.8)

2A more extensive description of the spin precession is given in reference [Sch01].
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with the k · p interaction parameterEp, the free electron massme, the subband energyE in the
quantum well, the respective energiesEΓ8 andEΓ7 of the valence band and the spin split-off band,
and the electrical potentialϕ(z). Here, the z-axis is defined as pointing from the sample surface
to the substrate. When determining the derivative in Eq.(2.8), the regions of continuous poten-
tial and the boundaries between two materials must be considered separately. The so-calledfield
contributionα f to the Rashba parameter stems from the regions of continuous potential:

α f =
h̄2Ep

6me

(
1

[E−EΓ7(z)−ϕ(z)]2
− 1

[E−EΓ8(z)−ϕ(z)]2

)
︸ ︷︷ ︸

Cf

〈Ψ|dϕ

dz
|Ψ〉

= −Cf (z) e〈Ψ|Ez|Ψ〉 (2.9)

with the electrical fieldEz =−1
e

dϕ

dz across the channel. Note thatCf is always negative, asE−EΓ7

is larger thanE−EΓ8 for all materials, so that the sign of the field contribution is set by〈Ψ|Ez|Ψ〉.
Due to the changes in band structure, the derivative in Eq.(2.8) shows a discontinuity at inter-
faces between different materials. Separate treatment of this derivative for the interfaces yields the
so-calledboundary contributionαb,i to the Rashba parameter, whereby the indexi indicates the
respective interface at the positionzi :

αb,i =
h̄2Ep

6me

(
∆EΓ7(zi)

[E−EΓ7(zi)−ϕ(zi)]2
−

∆EΓ8(zi)
[E−EΓ8(zi)−ϕ(zi)]2

)
︸ ︷︷ ︸

Cb,i

|Ψ(zi)|2

= Cb,i |Ψ(zi)|2 (2.10)

where∆EΓ7(zi) = EΓ7(z< zi)−EΓ7(z> zi) and∆EΓ8(zi) = EΓ8(z< zi)−EΓ8(z> zi) are the ener-
getic changes of theΓ7 andΓ8 bands at the position of the boundaryi and|Ψ(zi)|2 is the probability
density of the electron wave function .EΓ7(zi) andEΓ8(zi) are defined as the mean values of the
respective band energies on both sides of the boundary. Both field and boundary contribution
must be considered to properly describe spin-orbit interaction in semiconductor heterostructures
[Eng96, Gru00]. The total Rashba spin-orbit interaction parameter results as the sum of the two:

αtot = α f +∑
i

αb,i , (2.11)

in which the sum accounts for all boundariesi, at which the value of|Ψ(zi)|2 is not zero. The
relative importance of the field and the boundary contribution can be clarified by analysing two
basic potential designs, a square quantum well with differing boundary materials andEz = 0 as
well as a quantum well with identical boundary materials butEz 6= 0. In the former case spin-orbit
interaction can be exclusively attributed to the boundary contribution due to differing pre-factors
Cb,u andCb,l for the upper and lower channel boundaries [dAeS97]. In the latter case both field and
boundary contributions contribute to spin-orbit interaction, whereby the field contribution domi-
nates [Eng97, Sch98, Lin05]. In general, a full description of SIA requires consideration of both
field and boundary contributions.
The description of spin-splitting becomes much more complex for non-parabolic bands. In the
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simplest approach, band non-parabolicity is accounted for by using a wave-vector dependent ef-
fective massm∗(~k). More refined approaches can be found e.g. in references [dAeS94, Mat00].
Zero-field spin-splitting due to an external asymmetric potential is commonly referred to as the
Rashba-effect, caused bystructure inversion asymmetry(SIA).
The relative strengths of the BIA and the SIA contributions to zero-field spin-splitting depend
on the material system. In a rough approximation, the influence of the SIA term increases with
decreasing bandgap: in III-V semiconductors with large bandgaps, e.g. AlAs3, BIA is the main
origin of zero-field splitting, whereas SIA dominates in materials with small bandgaps such as
InAs3. For example, it has been shown theoretically that BIA is the main origin of zero-field split-
ting in AlGaAs/GaAs systems and that SIA dominates splitting in InAs-based heterostructures
[Lom88, dAeS94]. However, of these two mechanisms, only SIA is tunable by an external param-
eter, e.g. a gate voltage, thus enabling control of spin-orbit interaction in a given semiconductor
device.

2.1.3 Influence of boundary conditions

Recent experiments have shown that the boundaries of a quantum well have an additional influence
on the strength of spin-orbit interaction. If the materials of the channel and its boundaries differ,
the different compositions of constituents yield localized electric charges which are the source of
interface inversion asymmetry(IIA) [Ver97, Kre98, Ole01]. For semiconductors with a zinc-blende
lattice structure IIA is not distinguishable from BIA as the respective Hamiltonians are of the same
shape [Gan03]. In fact, different strengths of IIA are observed as an enhancement or reduction
of the effects typical to BIA. Therefore both effects are commonly described together using an
effective combined Dresselhaus parameterγc that incorporates both BIA and IIA contributions
[Gan04].

2.2 Shubnikov-de Haas oscillations

When a magnetic fieldB⊥ perpendicular to a high-mobility 2DEG is varied, oscillations in the
magnetoresistance are observed. The carrier density distribution of the 2DEG can easily be de-
termined from these so-calledShubnikov-de Haas(SdH) oscillations[Shu30]. Zero-field spin-
splitting commonly leads to slightly different carrier densities of the two non-degenerate spin
populations. Two distinct peaks are observed in the carrier density distribution, from which the
strength of the splitting can be determined. In SdH experiments, the presence of two carrier densi-
ties manifests itself as beating patterns in the oscillations [Luo88, Nit97, Mat00].

3bandgap of AlAs: 2160 meV; bandgap of GaAs: 1514 meV; bandgap of InAs: 418 meV.
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