
Introduction

A selfadjoint operator A in a Krein space (K, [·, ·]) is called definitizable if
the resolvent set ρ(A) is nonempty and there exists a polynomial p such that

[p(A)x, x] ≥ 0 for all x ∈ dom (p(A)). It was shown in [L1] and [L5] that a
definitizable operator A has a spectral function EA which is defined for all real
intervals the boundary points of which do not belong to some finite subset of

the real axis. With the help of the spectral function the real points of the
spectrum σ(A) of A can be classified in points of positive and negative type
and critical points: A point µ ∈ σ(A)∩R is said to be of positive type (negative

type) if µ is contained in some open interval δ such that EA(δ) is defined and
(EA(δ)K, [·, ·]) (resp. (EA(δ)K,−[·, ·])) is a Hilbert space. Spectral points of
A which are not of definite type, that is, not of positive or negative type, are

called critical points. The set of critical points of A is finite; every critical point
of A is a zero of any polynomial p with the “definitizing” property mentioned
above. Spectral points of positive and negative type can also be characterized

with the help of approximative eigensequences (see [LcMM], [LMM], [J6]),
which allows, in a convenient way, to carry over the sign type classification of
spectral points to non-definitizable selfadjoint operators and relations in Krein

spaces.

In this thesis selfadjoint operators and relations in a Krein space K which
locally have the same spectral properties as definitizable operators and rela-

tions will play an important role. More precisely, let Ω be some domain in C

symmetric with respect to the real line such that Ω ∩ R 6= ∅ and the intersec-
tions of Ω with the upper and lower open half-planes are simply connected.

We say that a selfadjoint operator or relation A is definitizable over Ω if

(i) every point µ ∈ Ω ∩ R has an open connected neighbourhood Iµ in R

such that the spectral points in each component of Iµ\{µ} are all of the
same sign type and

(ii) the spectrum of A in Ω\R consists of normal eigenvalues which do not
accumulate to Ω∩R and the resolvent of A is of finite order growth near

to Ω ∩ R.

Locally definitizable operators first occur in [L2] in connection with a pertur-
bation problem. They were introduced in a similar way as above and studied
by P. Jonas in [J1], [J2], [J3], [J6]. A selfadjoint operator or relation A which

is definitizable over Ω has a unique spectral function EA on Ω∩R. This local
spectral function is defined for all real intervals δ, δ ⊂ Ω ∩ R, the boundary



points of which are spectral points of definite type or belong to ρ(A). We re-
fer to [J6] for a detailed study of locally definitizable operators and relations,
different sign type classifications of spectral points and further references.

The first of our objectives in this thesis is to prove two theorems on
compact and finite rank perturbations of locally definitizable operators and
relations, which will be described in the following.

We will show in Theorem 2.1 that if A is a selfadjoint relation which is
definitizable over Ω and all spectral subspaces (EA(δ), [·, ·]), δ ⊂ Ω ∩ R, corre-

sponding to A are Pontryagin spaces with finite rank of negativity, then the
same holds true for a selfadjoint relation B if the difference of the resolvents
of A and B is compact for some λ ∈ ρ(A) ∩ ρ(B) ∩ Ω. We allow A and B

to be selfadjoint with respect to different Krein space inner products. Here it
is assumed that the difference of the corresponding Gram operators is com-
pact. Theorem 2.1 was published in a different and slightly more general form

in [BJ1].
For the special case of bounded selfadjoint operators this result was shown

by H. Langer, A. Markus and V. Matsaev in [LMM]. For unbounded operators

a different proof of Theorem 2.1 was recently given in [AJT], where so-called
spectral points of type π were studied with the help of approximative eigense-
quences. Our proof of Theorem 2.1 is essentially a variant of the proof of
Theorem 5.1 in [LMM]. Instead of the Lyubich-Matsaev spectral subspace re-

sults here we make use of a functional calculus for unitary operators in Krein
spaces with finite order growth of the resolvent in a neighbourhood of some
arcs of the unit circle (cf. [J1]).

Our second perturbation result concerns finite rank perturbations of lo-
cally definitizable operators and relations. Theorem 2.3 states that a selfad-

joint relation which is locally definitizable over Ω remains locally definitiz-
able over Ω after a finite dimensional perturbation in resolvent sense if the
perturbed relation is selfadjoint and the unperturbed and perturbed relation

have a common point in their resolvent sets belonging to Ω. For the case of
definitizable operators this result was obtained by P. Jonas and H. Langer in
[JL] by constructing a definitizing polynomial for the perturbed operator. The

methods used in the proof of Theorem 2.3 differ from those applied in [JL].
Our proof is based on Theorem 2.1 and a recent result from [AJ] on the spec-
tral properties of the inverses of certain matrix-valued functions associated to

locally definitizable relations.

The second main objective in this thesis is the investigation of a class of
abstract boundary value problems with boundary conditions depending on the

eigenvalue parameter. Let now A be a closed symmetric operator or relation
of finite defect n in the Krein space K and let {Cn,Γ0,Γ1} be a boundary value
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space for the adjoint relation A+ (see Definition 3.1). Let Ω be a domain as
above and let τ be an L(Cn)-valued function which is meromorphic in Ω\R
and symmetric with respect to the real line, that is τ(λ) = τ(λ)∗ holds for all
λ belonging to the set h(τ) of points of holomorphy of τ . We study boundary

value problems of the following form: For a given k ∈ K and λ ∈ h(τ)∩Ω find

a vector f̂ =
( f

f ′

)
∈ A+ such that

f ′ − λf = k and τ(λ)Γ0f̂ + Γ1f̂ = 0(0.1)

holds. Under additional assumptions on τ and A, a solution of this problem
can be obtained with the help of the compressed resolvent of a selfadjoint

extension Ã of A which acts in a larger Krein space. Such a selfadjoint relation

Ã is said to be a linearization of the boundary value problem (0.1). Based on
the coupling method from [DHMS1] (see also [HKS1], [HKS2]) we construct
a linearization of (0.1) and we study its local spectral properties in Ω, which

are closely connected with the solvability of the boundary value problem.

In the case that A is a symmetric operator or relation in a Hilbert space,
τ is a Nevanlinna function or a generalized Nevanlinna function and Ω co-

incides with C, boundary value problems of the form (0.1) have extensively
been studied in a more or less abstract framework in the last decades (see e.g.
[DHMS1], [DL], [DLS1], [DLS2], [DLS3], [E], [LM], [R]). Problems of the type

(0.1) with symmetric operators and relations of defect one in Krein spaces and
special classes of scalar functions in the boundary condition were considered
in [B], [BJ2] and [BT]. In [D1] and [D2] symmetric operators or relations

of infinite defect and operator functions in the boundary condition were al-
lowed. Very general classes of locally holomorphic functions in the boundary
condition can be found in e.g. [D2], [DL] and [DLS2].

Here we will assume that τ is a locally definitizable function in Ω, that
is, for every domain Ω′, Ω′ ⊂ Ω, τ can be written as the sum of a definiti-
zable function (cf. [J4], [J5]) and a function holomorphic on Ω′. Similarly

to selfadjoint operators and relations definitizable over Ω the points in Ω ∩ R

can be classified in points of positive and negative type and critical points
of τ . The well-known representation of Nevanlinna functions and generalized

Nevanlinna functions with the help of resolvents of selfadjoint operators and
relations in Hilbert and Pontryagin spaces (see e.g. [KL3]) was generalized to
locally definitizable functions in [J7]. More precisely, the locally definitizable

function τ can be minimally represented with a selfadjoint relation T0 defini-
tizable over Ω′, Ω′ ⊂ Ω, in some Krein space H such that the sign types of τ
and T0 coincide in Ω′ ∩ R.

In order to apply the coupling method for the construction of the lin-

earization Ã of (0.1) we have to realize the function τ in the boundary con-
dition of (0.1) as the Weyl function corresponding to a symmetric operator
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T ⊂ T0 and a boundary value space for T+. We show in Theorem 3.9 that
this is possible for an L(Cn)-valued locally definitizable function τ which is
strict, that is,

⋂

λ∈Ω∩h(τ)

ker
τ(λ) − τ(µ0)

∗

λ− µ0

= {0}

holds for some µ0 ∈ h(τ) ∩ Ω. For matrix-valued generalized Nevanlinna
functions this fact can be found in [DHS1] and for scalar local generalized

Nevanlinna functions a proof was given in [BJ2]. We emphasize, that a Weyl
function corresponding to a symmetric relation of finite defect and a boundary
value space is in general not strict (see Example 3.15). In the case that τ is

a non-strict locally definitizable function we show in Theorem 3.12 that τ can
be written in the form

λ 7→ τ(λ) =

(
0 0
0 τs(λ)

)
+ S, S =

(
∗ ∗
∗ 0

)
,

where τs is a strict L(Cs)-valued locally definitizable function which is also

minimally represented by the relation T0, s < n, and S is a symmetric matrix
constant. With the help of a suitable (n−s)-dimensional extension B of A and
a boundary value space {Cs,Γs

0,Γ
s
1} for B+ we rewrite the boundary value

problem (0.1) in the form

f ′ − λf = k, τs(λ)Γs
0f̂ + Γs

1f̂ = 0, f̂ =

(
f
f ′

)
∈ B+.(0.2)

A basic assumption will be that the selfadjoint extension A0 := ker Γ0 of

A in the Krein space K is locally definitizable over Ω and that the sign types
of A0 and τ are d-compatible in Ω ∩ R (see Definition 3.16). Then the selfad-
joint relation A0 × T0 in the Krein space K × H is locally definitizable. The

linearization Ã of the boundary value problem (0.1), (0.2) is a finite dimen-

sional perturbation in resolvent sense of A0 × T0. Therefore, by Theorem 2.3,

Ã is also locally definitizable and its sign types are d-compatible with the sign

types of A0 and τ in Ω ∩ R.

This thesis is organized as follows. In Section 1.1 and Section 1.2 we

provide some basic definitions and we introduce the spectral points of positive
and negative type with the help of approximative eigensequences. We recall
the definitions of locally definitizable selfadjoint relations and selfadjoint re-

lations locally of type π+ in Section 1.3 and we introduce the local spectral
function. Section 1.4 is devoted to matrix-valued locally definitizable func-
tions and matrix-valued local generalized Nevanlinna functions. In particular

Theorem 1.12 on minimal operator representations of these functions from [J7]
and [J8] will be used in the proofs of Theorem 2.3 and Theorem 3.9.
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Section 2 consists of the two results on compact and finite rank pertur-
bations of locally definitizable selfadjoint relations described above.

In Section 3 we investigate boundary value problems of the form (0.1).

First we recall the concepts of boundary value spaces and corresponding Weyl
functions for closed symmetric relations in Krein spaces. If the symmetric
relation A in the Krein space K is of finite defect and has a selfadjoint extension

which is definitizable over some domain Ω we conclude from the well-known
resolvent formula (Theorem 3.3) and Theorem 2.3 on finite rank perturbations
that all selfadjoint extensions AΘ of A in K with ρ(AΘ)∩Ω 6= ∅ are definitizable

over Ω (see Theorem 3.4).
Section 3.2 deals with boundary value spaces and Weyl functions of direct

products of closed symmetric relations. Theorem 3.5 and Theorem 3.6 are

essentially a consequence of the general transformation properties of boundary
value spaces and can be found in a slightly different form in [DHMS1].

In Section 3.3 we show how strict matrix-valued locally definitizable func-

tions can be realized as Weyl functions corresponding to symmetric operators
of finite defect and suitable boundary value spaces. Theorem 3.12 deals with
the non-strict case. A simple example of a symmetric operator of defect one in

(C2, [·, ·]) and a boundary value space where the corresponding Weyl function
is identically equal to zero will be given at the end of Section 3.3.

The λ-dependent boundary value problem (0.1) is studied in Section 3.4.
First we introduce the notion of d-compatibility of sign types of locally definiti-

zable functions and locally definitizable selfadjoint relations in Definition 3.16.
The main result in Section 3.4 is Theorem 3.18. Here we construct a mini-
mal linearization Ã of the boundary value problem (0.1), (0.2) such that the

compressed resolvent of Ã onto the basic space yields the unique solution of
(0.1), (0.2). In Theorem 3.20 we show that the eigenvectors corresponding

to an eigenvalue µ of Ã yield solutions of the “homogeneous” boundary value
problem

f ′ − µf = 0 and τ(µ)Γ0f̂ + Γ1f̂ = 0, f̂ =

(
f
f ′

)
∈ A+.

We finish Section 3.4 with some special cases of Theorem 3.18.

In Section 3.5 we formulate the main result from Section 3.4 for the case
that A has a selfadjoint extension which is locally of type π+ and the function
τ is a strict local generalized Nevanlinna function. Finally, in Theorem 3.27,

we consider the “global” case, that is, we assume that A is a densely defined
operator in a Pontryagin space and τ is a not necessarily strict matrix-valued
generalized Nevanlinna function.
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1. Locally Definitizable Selfadjoint Relations

and Locally Definitizable Functions

In this section we introduce a class of selfadjoint operators and relations
which admit a spectral decomposition into two relations one of which is defini-
tizable. Moreover, we define a class of functions which correspond to these

operators and relations. For a detailed study of locally definitizable selfadjoint
relations and locally definitizable functions we refer to the recent papers [J6]
and [J7] of P. Jonas.

1.1. Spectral Points of Positive and Negative Type

The linear space of bounded linear operators defined on a Krein space K1

with values in a Krein space K2 is denoted by L(K1,K2). If K := K1 = K2 we
simply write L(K). We study linear relations from K1 to K2, that is, linear

subspaces of K1 × K2. The set of all closed linear relations from K1 to K2

is denoted by C̃(K1,K2). If K = K1 = K2 we write C̃(K). Linear operators
from K1 into K2 are viewed as linear relations via their graphs. For the usual
definitions of the linear operations with relations, the inverse etc., we refer to

[DS1]. The sum and the direct sum of subspaces in K1 × K2 will be denoted

by and
.

.

In the following let (K, [·, ·]) be a separable Krein space and let S be a
closed linear relation in K. The resolvent set ρ(S) of S is the set of all λ ∈ C

such that (S−λ)−1 ∈ L(K), the spectrum σ(S) of S is the complement of ρ(S)
in C. The extended spectrum σ̃(S) of S is defined by σ̃(S) = σ(S) if S ∈ L(K)
and σ̃(S) = σ(S) ∪ {∞} otherwise. The extended resolvent set ρ̃(S) of S is

defined by ρ̃(S) = C\σ̃(S).
A point λ ∈ C is an eigenvalue of S if ker(S − λ) 6= {0}; we write

λ ∈ σp(S). We say that λ ∈ C belongs to the continuous spectrum σc(S) (the

residual spectrum σr(S)) of S if ker(S − λ) = {0} and ran (S − λ) is dense in
K (resp. if ker(S−λ) = {0} and ran (S−λ) is not dense in K). An eigenvalue
λ ∈ C of a closed linear relation S is called normal if the root manifold

Lλ(S) :=

∞⋃

k=0

ker
(
(S − λ)k

)

corresponding to λ is finite-dimensional and there exists a projection P with

PK = Lλ(S) such that

S = S ∩
(
PK
)2 .

S ∩
(
(I − P )K)

)2
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