
Chapter 1

Introduction

The properties of electron systems that are quantum mechanically confined in one or

more spatial directions are of considerable research interest both for a fundamental

physical understanding as well as for the progress of semiconductor technology. The

discovery of the quantum Hall effect [vK80] and the fractional quantum Hall effect

[Tsu82] in two-dimensional electron systems (2DESs) are famous examples of the

new physics resulting from the reduced dimensionality. Both discoveries have been

awarded with the Nobel prize and the former led to a new definition of the resis-

tance standard. While the quantum Hall effect was discovered in 2DESs in silicon

MOSFETs (Metal Oxide Semiconductor Field Effect Transistor), the observation of

the fractional quantum Hall effect was made possible by the high electron mobilities

achieved by molecular beam epitaxy (MBE) of the AlGaAs and GaAs compounds.

Here, 2DESs are realized at the interface between different semiconductors with

similar lattice constant that are epitaxially grown on top of each other with atomic

layer precision. Its properties make the AlGaAs/GaAs material system ideal for

basic research in semiconductor physics.[Sto84] In technological applications it is

mainly used where ultra fast processing times are required. The incompatibility to

Si and the lack of a natural oxide serving as an insulator hinder a very large scale

integration (VLSI) of GaAs circuits. Here, the SiGe material system offers the pos-

sibility to combine the advantageous properties of Si/SiO2 with its VLSI capability

and the design freedom of heterostructures due to the band offsets.[Sch97] The avail-

ability of high-mobility SiGe heterostructures also gives rise to a renewed interest

in the fundamental research on the unique properties of the material system. In

particular, only a rudimentary understanding of the splitting of the two occupied

conduction band valleys in high magnetic fields has been reached so far. Even after
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more than 20 years of intense fundamental research, new and totally unexpected

properties of 2DESs are discovered, as, for instance, the recent observation of novel

zero-resistance states induced by microwave irradiation.[Man02, Zud03]

One- and zero-dimensional systems have been realized, in a bottom-up approach

by self-organization or in a top-down approach starting from 2DESs by introducing

an additional lateral confinement potential through structured gate electrodes or

etching. These systems again open up new fields both in fundamental research as

well as for possible technological applications.

A variety of experimental tools has been used for the investigation of low-dimensional

systems. The majority of the experimental results were obtained using magneto-

transport measurements and spectroscopic methods. These experiments probe the

excitation spectrum of the system and conclusions about the ground state properties

can hence only be drawn indirectly. A direct relation to the systems ground state is

given for thermodynamic equilibrium quantities. Investigations of thermodynamic

properties included magnetocapacitance [Smi85, Mos86, Ash93, Dol97, MR02], spe-

cific heat [Gor85], compressibility [Eis94] and the magnetization.[Sto83, Eis85b,

Wie97, Mei99, Har01] However, direct measurements of the oscillatory behavior

of the magnetization as a function of the magnetic field or the carrier density turns

out to be a challenging experiment due to the small absolute number of electrons.

In this work the thermodynamic equilibrium magnetization of low-dimensional elec-

tron systems has been investigated experimentally using a micromechanical can-

tilever technique. In particular the magnetization oscillations of 2DESs formed in

MBE-grown AlGaAs/GaAs and SiGe/Si heterostructures have been studied as a

function of magnetic field, temperature and tilt angle between 2DES normal and

magnetic field. Additionally, the magnetization of quantum wire arrays prepared

starting from GaAs 2DESs has been investigated. Special attention has been paid

to the influence of electron-electron interaction on the de Haas-van Alphen effect.

Detailed information about the density of states of the electron systems was gained

by comparison of the experimental data with model calculations.

This thesis is organized as follows. In Chapter 2 a brief introduction to the prop-

erties of 2DESs subjected to a strong magnetic field is given. A thermodynamic

approach to calculate the magnetization from a model density of states is discussed.

The experimental technique and the preparation of the cantilever magnetometers is

explained in Chapter 3 and Chapter 4, respectively. In Chapter 5 the experimental

results are presented. This chapter is divided into three main parts. In the first

section the magnetization of modulation-doped AlGaAs/GaAs heterostructures is
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discussed. In the second section the magnetization of a SiGe/Si modulation-doped

quantum well is investigated. The last section focusses on quantum wires prepared

from AlGaAs/GaAs 2DESs. The experimental results are compared to model cal-

culations and discussed with respect to the influence of the electron-electron inter-

action. Chapter 6 summarizes the results of this work.



Chapter 2

Fundamental theoretical concepts

In this chapter the basic theoretical concepts needed to explain the magnetiza-

tion oscillations in low-dimensional electron systems will be introduced. A more

detailed introduction to the physical concepts of low-dimensional electron systems

can be found in Ref. [Kel95]. First of all the energy spectrum of a free electron

in two dimensions with a uniform perpendicular magnetic field will be discussed.

This model will be extended by a density of states (DOS) approach allowing for a

more realistic modeling of a 2DES in a magnetic field. Secondly, a thermodynamic

approach to calculate the orbital magnetization from the energy spectrum will be

presented, additionally introducing the concept of exchange-enhanced energy gaps

for spin- or iso-spin systems in a semi-phenomenological way. The influence of a

magnetic field component parallel to a 2DES on the orbital magnetization will be

discussed. Finally, the effect of an additional lateral confinement in one dimension

will be discussed for the case of a parabolic confinement potential. To illustrate the

fundamental background and to interpret the data in the experimental part, pro-

grams were developed in this thesis, which calculate the dHvA effect based on DOS

models. The graphs in this section present theoretical data which were calculated

using realistic parameters that model the experimental data in Chapter 5.

The kinetics of conduction band electrons in a semiconductor crystal can be de-

scribed as the motion of quasi-free electrons with an effective mass m∗ accounting for

the periodic potential modulation of the crystal lattice in a parabolic approximation.

In the samples investigated in this work m∗ is assumed to be either m∗ = 0.067 me

for electrons in GaAs or m∗
t = 0.19 me for the transversal mass of 2D electrons in

Si in the plane normal to the symmetry axis. The 2DESs investigated in this work

were realized by MBE growth. The confinement potential in the growth direction is
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determined by the conduction band energies of the different materials in the grown

layer sequence. The carrier density is controlled independently via modulation dop-

ing. In the following the growth direction is assumed to be along the z-axis. By

adjusting layer sequence and doping one can achieve heterostructures in which only

the lowest subband of the z-confinement E0z is occupied at low temperatures. Thus,

a 2DES with quasi-free motion in the (x, y)-plane is realized. The zero-field DOS of

such a spin-degenerate electron system is given by

D0(E) = 0 ∀ E < E0z, D0(E) = m∗/π~2 ∀ E ≥ E0z. (2.1)

2.1 2DES in a perpendicular magnetic field

In the effective mass approximation the Hamiltonian for noninteracting electrons in

a uniform magnetic field ~B is given by

Ĥ =

(
p̂ + e ~A

)2

2m∗ + V (~r) , (2.2)

with the momentum operator p̂ = −i~∇~r, and the vector potential ~A, which deter-

mines the magnetic field through

∇ · ~A = 0, ∇× ~A = ~B. (2.3)

V (~r) is the external potential which we will neglect in the following, i.e. we assume

V (~r) = 0. The case of V (~r) = V (x) will be discussed in Sec. 2.5.

In a magnetic field ~B = B~ez along the z-axis the vector potential in the Landau

gauge is given by ~A = xBz~ey and the Schrödinger equation becomes
[

∂2

∂x2
+

(
∂

∂y
+

ieBz

~
x

)2

+
2m∗

~2
E

]
ψ (x, y) = 0. (2.4)

Since
[
p̂y, Ĥ

]
= 0 in the Landau gauge, one can choose

ψ (x, y) = φx(x)eikyy (2.5)

for the motion in the (x, y)-plane. Eq. (2.4) therefore becomes the equation of a

harmonic oscillator
[
− ~2

2m∗
∂2

∂x2
+

m∗ω2
c

2
(x− x0)

2

]
φx(x) = Exyφx(x), (2.6)
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with the cyclotron frequency

ωc =
eB

m∗ , (2.7)

as eigenfrequency. Here x0 = −~ky/m
∗ωc = −kyl

2
B is the guiding center coordinate

of a cyclotron orbit and lB = (~/eB)1/2 is the magnetic length. The eigenfunctions

are

φx,j(x) =
(
2jj!

√
πx0

)−1/2
exp

{
−1

2

(
x

x0

)2
}

Hj (x/x0) , (2.8)

with the hermite-polynomials Hj. The corresponding eigenenergies, i.e. the energies

of the Landau levels, are given by

Ej = E0z +

(
j +

1

2

)
~ωc, j = 0, 1, 2, . . . . (2.9)

The energy eigenvalues are degenerate with respect to ~k. Since in a sample with

area A = Lx · Ly the distance between two guiding centers in the Landau gauge

is ∆x0 = ∆kyl
2
B = (2π/Ly)(~/eB), the number of states with the same energy is

N = Lx/∆x0 = AeB/h. The degeneracy of a Landau level per unit area is hence

NL =
eB

h
· gs · gv , (2.10)

where gv is a valley degeneracy factor which gives the number of equivalent energy

bands (gv = 2 in Si/SiGe 2DES and gv = 1 in GaAs) and gs = 2 for a spin degenerate

system. For a given carrier density ns the filling factor is defined as

ν = ns/(eB/h) . (2.11)

Due to the Landau quantization in a perpendicular magnetic field B the energy

independent zero-field DOS of Eq. (2.1) condenses into a set of discrete levels

D (E) = NL

∞∑
j=0

δ (E − Ej − E0z) . (2.12)

2.2 Thermodynamic properties of a 2DES

In order to achieve a more realistic description of a 2DES one has to account for the

effects of finite temperature and the residual disorder in the sample. The disorder
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leads to a broadening of the ideally δ-peak shaped Landau levels. The finite tem-

perature leads to an equilibrium occupation of the states following the Fermi-Dirac

distribution

f(E, χ, T ) =

[
1 + exp

(
E − χ

kBT

)]−1

. (2.13)

Here, χ denotes the chemical potential of the system. The thermodynamic equilib-

rium quantities of such a system can now be calculated from the DOS. In our case

we are interested in the magnetization

M = − ∂F

∂B

∣∣∣∣
N,T

, (2.14)

as a function of the magnetic field B at fixed particle number N = nsA. M can be

derived by self-consistently calculating the free energy F from

ns =

∫ χ

0

f (E, χ, T ) D(E)dE, (2.15)

F = χN − kBTA

∫
D(E) ln

[
1 + exp

(
χ− E

kBT

)]
dE. (2.16)

In the following we present calculations modeling the magnetic properties for char-

acteristic cases which are relevant for the experiments performed in this work. In

particular these are the magnetization of a 2DES in a perpendicular magnetic field

and in tilted magnetic fields as well as the magnetization of quantum wires in a per-

pendicular field. The calculations are performed on the basis of parameters modeling

the experimental data.

In Fig. 2.1 (a) the DOS and the chemical potential χ are shown for Gaussian broad-

ened Landau levels at different temperatures. The corresponding magnetization M

per electron as a function of B as calculated from Eqs. (2.14)-(2.16) is depicted in

Fig. 2.1 (b). Here, E0z is taken to be independent of the magnetic field and chosen

to be zero. The period ∆(1/B) of the oscillations is related to the carrier density

ns according to

∆

(
1

B

)
= gs · gv · e

hns

= gs · gv · 0.242 · 1

ns[1011/cm2]
[T−1]. (2.17)

For the ideal 2DES χ jumps discontinuously between two adjacent Landau levels

at even filling factor. The jump in χ crosses an energy gap ∆E = ~ωc = 2µ∗BB in

the single particle spectrum, where the effective Bohr magneton µ∗B = e~/2m∗ is


