
Chapter 1

Introduction

The electronic properties of ordinary metals can be described using the free electron model,
where the electrons in the material are thought to behave like independent particles with
negligible interactions. The free-electron model can be modified with perturbation calcu-
lations, where additional interactions are used to alter the solutions of the free-electron
picture to describe a larger number of materials. If the particle-particle interactions inside
the material are too strong, the free-electron picture extended with perturbations fails to
describe those systems. Such a material class is given by manganites, a subclass of the so
called strongly correlated metal oxides.

Doped or mixed valence manganites are solids typically belonging to one of two struc-
ture families. One is called Ruddlesden-Popper series (A, B)1+nMnnO3n+1, whereas the
other is called perovskite manganites (A, B)MnO3. Normally, for A a trivalent element of
the rare earth and for B a divalent alkali metal is chosen. Correspondingly, the oxidation
state of the manganese ions is 3+ and 4+, respectively. In the case of a trivalent manganese
ion, the important Jahn-Teller effect lowers the potential energy of the manganese ion by
displacing the neighbor oxygens resulting in an orthorhombic lattice distortion. Thus, the
occupied 3d3z3−r2 orbital has a preferred orientation due to the neighbor oxygens and,
correspondingly, the electron is more localized.

Mixed valence manganites show a strong correlation between structural, electronic, or-
bital and spin degrees of freedom leading to a variety of magnetic and electronic prop-
erties. Mixed valence manganese oxides show for instance, a temperature dependent
development of orbital ordering and charge ordered stripes at a commensurate ratio of
trivalent and tetravalent manganese ions. Furthermore, mixed valence manganites like
La1−xCaxMnO3 feature the colossal magnetoresistance (CMR) effect close to the phase
transition from the paramagnetic insulating to the ferromagnetic metallic state. These
properties are of course sensitive to doping, either by changing cations with different va-
lence, size, or magnetic moments, or by tuning the oxygen content. The strong correlation
between the different degrees of freedom is reflected by a complex (x, B, T )-phase diagram
exhibiting different ordering, structural and magnetic phases depending on the Hund’s rule
coupling between spins as well as the Jahn-Teller distortion.

This thesis is devoted to experimental studies on perovskite and naturally layered per-
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ovskite manganites using inelastic light scattering and spectroscopic ellipsometry. Raman
spectroscopy is able to probe simultaneously vibrational, electronic and magnetic lattice
excitations in a solid. It is also very sensitive to the local symmetry of the crystal lattice.
A change in the lattice structure, which lowers the symmetry of the unit cell results in the
activation of additional modes in the corresponding Raman spectrum.

Ellipsometry is a technique that measures the change in polarization of light upon
reflection on a boundary between two media with a mismatch in the complex refractive
index. Ellipsometry is a non-destructive and self-normalizing technique with high accuracy
using very low intensities resulting in negligible influence on the sample. Another advantage
of this technology is that the optical properties for a bulk system like the real part ε1 and
the imaginary part ε2 of the complex dielectric function ε = ε1 + iε2 can be determined
simultaneously without using the Kramers-Kronig relations.

The first chapters introduce the spectroscopic ellipsometry technique (chapter 2) and
Raman scattering (chapter 3). In the first section (4.1) of chapter 4, the physical properties
and the structure of the manganites are introduced. In the following sections (4.2 and
4.3) the doped perovskite compound La1−xCaxMnO3 (LCMO) and the naturally layered
La2−2xSr1+2xMn2O7 (LSM327) are presented with a special focus on charge and orbital
ordering phenomena. Afterwards, a closer look is taken on the insulating doped perovskite
compound Sr1−xCaxMnO3 (SCMO) in section 4.4.
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Chapter 2

Ellipsometry

Ellipsometry is a very powerful technique that measures the change in polarization of
light upon reflection on a boundary between two media with a mismatch in the complex
refractive index [8]. The change in polarization is due to the boundary conditions imposed
by the Maxwell equations. Ellipsometry is a non-destructive and self-normalizing technique
with high accuracy using very low intensities resulting in negligible influence on the sample.
Another advantage of this technology is that the optical properties for a bulk system like
the real part ε1 and the imaginary part ε2 of the complex dielectric function ε = ε1 + iε2 or
the refraction index n and the absorption coefficient k can be determined simultaneously
without using the Kramers-Kronig relations [8].

2.1 Theory of Ellipsometry

2.1.1 Spectroscopic Ellipsometry Setup

A basic setup for a photometric ellipsometer is shown in Fig. 2.1. It consists of a light
source, two linear polarizers and a photo detector.

Well collimated light from the source is incident on the polarizer defining the electric
field vector �E of the beam by an angle α1 with respect to the plane of incidence. After
passing the polarizer the beam impinges on the sample surface under an angle φ0. The
polarization of the beam is changed due to the refraction index mismatch of the sample
against its surrounding environment, e.g. air. The directly reflected beam is analyzed by
a second polarizer (analyzer) and hits the photo detector, which detects the dependence
of the resulting intensity on the analyzer angle α2. From the ratio of the intensities for
different analyzer angles α2 the so called ellipsometric parameters Ψ and ∆ are calculated.
These ellipsometric parameters are connected by the fundamental equation of ellipsometry
to the complex reflection coefficients [8]:

(2.1) ρ = tan Ψei∆ =
Rp

Rs

.
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Figure 2.1: Basic setup for photometric ellipsometry

Preceding Rp and Rs are the complex reflection coefficients for the parallel and perpendicu-
lar component of the light beam with respect to the plane of incidence. For a bulk system
these complex reflection coefficients are the Fresnel coefficients. The complex reflection
coefficients Rp,s can be written as a product of a phase and amplitude term

Rp = |rp| eiδp(2.2)

Rs = |rs| eiδs .(2.3)

It can be easily seen, that the ellipsometric parameters are related to the relative change
of the phase and amplitude by

tan Ψ =
|Rp|
|Rs|(2.4)

∆ = δp − δs .(2.5)

When considering the reflection of light at a surface, the theory of electrodynamics is used
with the Maxwell equations and the associated material relations [33]
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∇× �H =
1

c

∂ �D

∂t
+

4π

c
�j ,(2.6)

∇× �E =
1

c

∂ �B

∂t
,(2.7)

∇ �D = 4πρ ,(2.8)

∇ �B = 0 with(2.9)

�D = �E + 4π �P(2.10)

�H = �B − 4π �M ,(2.11)

�j = σ �E .(2.12)

Here, �E is the electrical field vector, �D is the electric displacement, �B is the magnetic
field (also known as magnetic induction), �H is the magnetic auxiliary field, �P is the dipole

moment and �M is the magnetic dipole per unit volume, �j is the current density, c is the
speed of light, σ is called as conductivity, and ρ is the charge density. For a linear media
the definitions for �D and �H can be written as

�D = �E + 4π �P =⇒ �D = ε �E and(2.13)

�H = �B − 4π �M =⇒ �H =
1

µ
�B ,(2.14)

whereas ε is the electrical permittivity and µ the magnetic permeability. In the case of
non magnetic materials the magnetic permeability µ = 1. It is important to note that this
theory describes only classical macroscopic parameters.

2.1.2 Polarization Ellipsoid

The term polarization refers to the time-dependence of the electric field vector at a fixed
point in space. In the following it is assumed that the electromagnetic wave under con-
sideration is a monochromatic plane wave with a direction �k parallel to the z-axis of the
coordinate system. Using the fact that a monochromatic plane wave can be written as the
superposition of two linear polarized and to each other orthogonally waves

(2.15) �E(�r, t) =

[
Ex(�r, t)
Ey(�r, t)

]
=

[
|Ex|e−i(�k�r−ωt−δx)

|Ey|e−i(�k�r−ωt−δy)

]
,

it can be shown that in the most general case the end point of the electric field vector �E
traces the outline of an ellipse. In this case the wave is elliptically polarized.

Elliptic polarization requires five parameters for complete determination of the time
dependence of the electric field vector [8].The parameters, shown in figure 2.2, are the
azimuth angle Θ, the ellipticity e, the handleness, the amplitude A and the absolute phase.

The azimuth angle Θ determines the orientation of the ellipse with respect to the xy-
coordinate system as shown in Fig. 2.2. The ellipticity describes the appearance of the
ellipse and is given by the ratio e = b/a = tan γ, whereas a is the length of the major
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Figure 2.2: Parameters determining the polarization ellipse: Azimuth angle θ, amplitude
A and the ellipticity e = tan γ.

axis and b the length of the minor axis of the polarization ellipse. It can be seen that
the special cases of linear and circular polarized light can be obtained from the general
definition of elliptic polarization by setting the ellipticity to 0 and 1, respectively. The
chirality is defined with respect to the viewer looking against the direction of propagation
given by �k. Usually it is included into the ellipticity by determining its sign. The positive
sign refers to clockwise tracing of the outline of the ellipse, while the negative sign refers
to counterclockwise tracing. Hence, the ellipticity e is confined to the range

(2.16) −1 ≤ e ≤ 1 .

The amplitude A = a2 + b2 determines the size of the polarization ellipse and is usually
also used to define the intensity of the wave. The last parameter, the absolute phase, is
the position of the electric field vector with respect to a special moment in time (normally
for t = 0 s).

2.1.3 Jones Vector Formalism

The Jones vector formalism is a useful representation for the behavior of an electromagnetic
wave as it propagates through optical components [8]. The underlying principle of the
Jones vector formalism is the representation of polarization by the superposition of two
mathematically orthogonal basis states. A good choice for such basic polarization states
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are the two linear orthogonal polarizations as described in 2.1.2. In ellipsometry only
the polarization properties are of interest. Therefore information about the absolute time
dependence may be suppressed without loss of information. In this case the complete
representation can be reduced to

(2.17) �E =

[
Ex

Ey

]
with Ex = |Ex|eiδx and Ey = |Ey|eiδy .

The two components are complex numbers, also called phasors. They describe the
amplitude of the two basis vectors and their phase difference. The superposition of these
two components restores the polarization ellipse. In the Jones formalism, optical compo-
nents are described by 2×2 matrices. For example, the effect of a linear polarizer with an
azimuth angle α respective to the xy-coordinate system on a linearly polarized wave with
Jones vector �Ei is analogous to pre multiplying this Jones vector by a matrix given by

(2.18) �Eo =

[
cos α 0

0 sin α

]
�Ei .

Starting with an input Jones vector �Ei, the resulting output Jones vector �Eo after a
sequence of optical elements can be obtained by subsequently multiplying the input Jones
vector �Ei with the Jones matrices representing the different optical elements.

2.1.4 Stokes Vector Formalism

An alternative way to represent the polarization of an electromagnetic wave is the so
called Stokes vector formalism [15, 80]. The components of this four dimensional vector
�S = {S0, S1, S2, S3} are defined as

S0 = |Ex|2 + |Ey|2(2.19)

S1 = |Ex|2 − |Ey|2(2.20)

S2 = 2|Ex||Ey| cos(δy − δx) = 2|Ex||Ey| cos ∆(2.21)

S3 = 2|Ex||Ey| sin(δy − δx) = 2|Ex||Ey| sin ∆ .(2.22)

The components of the Stokes vector Si have all dimensions of intensity. It is evident
that S0 gives the total intensity of the light wave and S1 gives the difference between the
intensities of the x and y components. S2 represents the preference of the wave to either
the +π

4
or the −π

4
linearly polarized component and S3 represents the preference of the

wave to either the right-handed or to the left-handed circularly polarized component [8].
The Stokes parameters of a totally polarized wave satisfy the condition

(2.23) S2
0 = S2

1 + S2
2 + S2

3 ,
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