
Chapter 1

Introduction

Most real-world problems in operations research involve uncertain data. Thus,

finding optimal decisions turns into selecting a “best” random variable. Then the

question comes up which criteria to use for the selection. Quickly, the matter of

risk aversion becomes an issue. Further, for realistic modeling integer variables

are often helpful and sometimes inevitable. This thesis suggests a way of how

to make such decisions in the framework of two-stage stochastic mixed-integer

programming.

Section 1.1 introduces the concept of mean-risk models, and in Section 1.2

we define the risk measures we want to analyze in this thesis. We close this

chapter with Section 1.3 giving an introduction to two-stage stochastic mixed-

integer programming and extending the traditional expectation-based stochastic

program towards risk aversion by formulating mean-risk models with the risk

measures defined in the previous section. In Chapter 2 we analyze the added

model components with respect to structure and stability and in Chapter 3 com-

putational issues are covered.
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1.1 Mean-Risk Models

Throughout the thesis, we impose a cost minimization framework. Consider

a probability space (Ω,A, IP ) and the set Z of all real random cost variables

Z : Ω −→ R. Suppose, we want to find a decision x ∈ X such that the random

future costs, represented by the random variable Z(x, ω) ∈ Z, would best suit

our purpose. This leads to finding a “best” random variable out of the family

{Z(x, ω)}x∈X ⊆ Z. We want to decide on the decision variable x and so on the

corresponding random variable Z(x, ω) by comparing certain scalar characteris-

tics of the random variables, namely by so-called mean-risk models

min
x∈X

IE(Z(x, ω)) + ρR(Z(x, ω)), ρ > 0, (1.1)

where IE : Z −→ R denotes the expected value, R : Z −→ R a risk measure,

and ρ > 0 a suitable weight factor.

We consider the mean-risk models with the risk measures Excess Probability,

Expected Excess, Value-at-Risk and Conditional Value-at-Risk applied to random

variables occurring in two-stage stochastic mixed-integer programming. These

random variables are essentially defined by value functions of mixed-integer linear

programs being discontinuous and nonconvex, such that, in particular, convexity

of the objectives in the mean-risk model is not given. Therefore, for the sake

of applicability to real-world problems, it is essential to choose a risk measure

such that, despite the poor properties of the random variables, the resulting

stochastic integer programs are nevertheless structurally sound and amenable to

algorithmic treatment. In the following we will show that the risk measures under

consideration mostly satisfy these requirements.

The mean-risk model (1.1) aims at minimizing the weighted sum of two com-

peting objectives. Viewed from a more general perspective, it is a scalarization

of the multiobjective optimization problem

min
x∈X

(
IE(Z(x, ω)),R(Z(x, ω))

)
. (1.2)
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For an introduction to multiobjective optimization we refer to [9, 30, 56]. An

accepted notion of optimality in multiobjective optimization is efficiency. A point

x̄ ∈ X is called efficient for (1.2) if there is no other point x ∈ X such that

IE(Z(x, ω)) 6 IE(Z(x̄, ω)) and R(Z(x, ω)) 6 R(Z(x̄, ω)), with at least one strict

inequality. The set of all efficient points is named efficient frontier. Every optimal

solution to the mean-risk model (1.1) with a weight factor ρ > 0 is an efficient

point, a so-called supported efficient point. Due to the lacking convexity of our

objective functions, not all efficient points are supported, and thus cannot be

computed by solving scalarizations (1.1). However, solving the mean-risk model

(1.1) for various values of ρ > 0 has the capability to trace the supported part

of the efficient frontier. In Chapter 3 a discrete tracing method is described and

carried out for a real-life optimization problem.

In the next section we introduce our four risk measures for the application in

the framework of two-stage stochastic mixed-integer programming.

1.2 Risk Measures

The definition of risk is a highly subjective matter – each decision maker might

have his own. Having this in mind, we just want to suggest a collection of four

risk measures that are easily comprehensible. They are chosen such that they

fulfill certain well accepted properties every measure of risk should have. And,

last but not least, the risk measures are selected with our particular application

in two-stage stochastic mixed-integer programming in mind – that is to say, the

application of the measure to our setting ought to lead to optimization problems

that are as “nice” as the purely expectation based problem, both in terms of

structure and stability, and with respect to computational properties. Summing

up, our risk measures should be “stochastically sound”, “structurally sound” and

“computationally sound”.

We proceed by defining the measures and addressing the above issues. The
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first is treated completely in this section, the other two are just touched on in

the next section, whereas Chapter 2 and Chapter 3 are devoted to these topics.

We want to consider two classes of risk measures – both ask for the preselection

of a parameter –

a cost threshold η ∈ R,

or

a probability α ∈ (0, 1),

where (0, 1) is the open interval {α ∈ R : 0 < α < 1}. The cost threshold

η can be interpreted as a certain threshold of pain or ruin level, and α as the

probability level of the costs the decision maker is willing to tolerate.

For fixed x ∈ X and assuming that IE(|Z(x, ω)|) < +∞, we define the fol-

lowing risk measures:

The Excess Probability: “probability that costs exceed η”,

EPη(Z(x, ω)) := IP ({ω ∈ Ω : Z(x, ω) > η}),

the Expected Excess: “expectation of costs exceeding η”,

EEη(Z(x, ω)) := IE(max{Z(x, ω)− η, 0}),

the Value-at-Risk: “minimal costs of (1− α) · 100% worst cases”,

V aRα(Z(x, ω)) := min{η : EPη(Z(x, ω)) 6 1− α, η ∈ R},

and the Conditional Value-at-Risk: “expectation of costs in (1−α) · 100% worst

cases”,

CV aRα(Z(x, ω)) := min{η +
1

1− α
EEη(Z(x, ω)) : η ∈ R}.

It holds that EPη(Z(x, ω)) = 1 − Fx(η) where Fx(η) := IP ({ω ∈ Ω :

Z(x, ω) 6 η}) is the distribution function of the random variable Z(x, ω). Thus,

the Excess Probability is well defined. We have chosen this definition since we
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want to minimize the probability of the worst cases. Since IE(|Z(x, ω)|) < +∞,

the Expected Excess is also well defined.

The Value-at-Risk V aRα := V aRα(Z(x, ω)) denotes an α-quantile of the ran-

dom variable Z(x, ω) and by the above argument for the Excess Probability it

holds that V aRα = min{η : Fx(η) > α, η ∈ R}. The minimum is always

attained, since the distribution function is nondecreasing and right-continuous in

η. Consider V aR+
α := inf{η : Fx(η) > α, η ∈ R}. It is immediate that always

V aRα 6 V aR+
α . These values are equal unless Fx(·) is constant at α over a cer-

tain interval. When Fx(·) is continuous and strictly increasing, V aRα = V aR+
α

is simply the unique η satisfying Fx(η) = α. Otherwise, it is possible that this

equation has no solution or a whole range of solutions. In the former situation

Fx(·) has a probability atom at V aRα, while in the latter, the graph of Fx(·) has a

constant segment at Fx(·) = α being either the half-open interval [V aRα, V aR+
α )

or the closed interval [V aRα, V aR+
α ], depending on whether or not Fx(·) has a

jump at V aR+
α .

The identity of the verbal and the mathematical definitions for the first three

risk measures are self-evident. Although many authors use the same definition

as we for the Conditional Value-at-Risk, cf. [2, 31, 73], we want to derive it from

the verbal definition following the paper of Rockafellar and Uryasev ([84]):

If there is no probability atom at V aRα and so Fx(V aRα) = α, the Conditional

Value-at-Risk is equal to the conditional expectation

IE(Z(x, ω) | Z(x, ω) > V aRα), (1.3)

since V aRα equals the “minimal costs of (1− α) · 100% worst cases”.

Note, that (1.3) is the usual definition of the Conditional Value-at-Risk for

continuous distribution functions (having no probability atoms at all) as it then

coincides with the verbal definition, cf. [73, 83, 84].

But, if there is no η such that Fx(η) = α and so there is a probability atom at

V aRα, which in particular may occur for discretely distributed random variables,



8 CHAPTER 1. INTRODUCTION

(1.3) does not coincide with the verbal definition of Conditional Value-at-Risk.

A correct definition for the general case is

CV aRα(Z(x, ω)) := mean of the α-tail distribution of Z(x, ω),

where the distribution in question is the one with the distribution function defined

by

Fα
x (η) :=





0 for η < V aRα,

[Fx(η)− α]/[1− α] for η > V aRα.

(1.4)

For a rigorous proof of this, including graphical examples we refer the reader

to [84]. The problem is, when using (1.3) for the general case, one is not taking the

expectation of the upper (1−α)-part of the full distribution, since the probability

atom at V aRα must be split to do so, but this can not be done by taking any

conditional expectation. Thus one has to make the trick as in (1.4): taking the

correct part of the original distribution function and rescale it onto [0, 1].

Another correct formalization for the general case has been worked out in

[1, 2], where the Conditional Value-at-Risk is expressed as a difference of an ex-

pectation and a correcting exceeding part if there is a probability atom at V aRα.

The authors also discuss the confusion that inheres the current publications on

this subject due to the latter described problems. In particular the authors men-

tion that the name Conditional Value-at-Risk stems from the time where the

continuity of the distribution function was assumed and thus the conditional ex-

pectation (1.3) was the correct definition. However, they show that in the general

case there is no way to express the Conditional Value-at-Risk as a conditional

expectation and thus decline the term Conditional Value-at-Risk. They suggest

the name Expected Shortfall for the gain maximization framework.

In [70] the Conditional Value-at-Risk was defined for general distribution func-

tions by means of the second quantile function being the convex conjugate func-

tion of the distribution function of order two. The authors call the risk measure

Tail Value-at-Risk.



1.2. RISK MEASURES 9

We state the last step to our definition of the Conditional Value-at-Risk with-

out proof, cf. [2, 70, 73, 84].

Proposition 1.2.1 For IE(|Z(x, ω)|) < +∞, the Conditional Value-at-Risk can

be expressed by the following minimization formula:

CV aRα(Z(x, ω)) = min{η +
1

1− α
EEη(Z(x, ω)) : η ∈ R}.

Further, η + 1
1−α

EEη(Z(x, ω)) is convex in η and finite (hence continuous) and

the optimal set is the nonempty closed interval [V aRα, V aR+
α ], reducing to V aRα

when the graph of Fx has no constant segment at Fx(η) = α. In particular, V aRα

always is a minimizer, and thus CV aRα(Z(x, ω)) ∈ R.

As announced, we conclude this section with checking whether our risk mea-

sures are “stochastically sound”:

The relations of stochastic dominance, cf. [58, 66], one of the fundamental

concepts in decision theory, introduce partial orders in the space of real random

variables. This provides a basis for selecting “best” members from families of

random variables taking risk aversion preferences into account. Our risk measures

are related to the first-degree stochastic dominance relation

Z(x1, ω) ¹1 Z(x2, ω) : ⇐⇒ ∀η ∈ R : EPη(Z(x1, ω)) 6 EPη(Z(x2, ω)),

and the second-degree stochastic dominance relation

Z(x1, ω) ¹2 Z(x2, ω) : ⇐⇒ ∀η ∈ R : EEη(Z(x1, ω)) 6 EEη(Z(x2, ω)).

Applying these partial orders directly to optimization would lead to multiobjec-

tive optimization problems with a continuum of criteria. Ogryczak and Rusz-

czyński have studied mean-risk models, which are single-criterion optimization

problems, and their consistency with multiobjective criteria induced by stoch-

astic dominance, see [69, 70]. A mean-risk model is called consistent with a

stochastic dominance relation of a certain degree, if optimal solutions to the


