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Chapter 1

Introduction

1.1 Transition-Metal Oxides

1.1.1 General Properties

Transition-metal oxides with partially filled d-electron bands exhibit a wide range of un-
usual and not yet sufficiently understood phenomena like dynamic lattice distortions,
magnetic-, charge-, and orbital ordering. However, apart from the high-Tc superconduc-
tivity of the cuprates, the most outstanding and prominent properties of these materials
are the Mott insulating phase, the anomalous metallic phase with poor conduction as well
as the metal-insulator transition. The transition occurs on variation of chemical compo-
sition or external parameters like temperature, pressure, or magnetic field. This complex
behaviour cannot be explained by the conventional one-electron band theory assuming
non-interacting electrons subject to the periodic lattice potential of the solid. The elec-
tronic structure of transition-metal oxides with partially filled d-electron bands is rather
believed to be determined by strong electronic correlation effects in combination with
strong electron-lattice coupling.

1.1.2 Electronic States

Two fundamental models, the Hubbard and the double-exchange model, are introduced in
order to provide an overview of the basic theoretical concepts used to explain the unusual
properties of transition-metal oxides. In spite of their rigorous simplifications, neglecting
orbital degeneracy, hybridisation, and inter-site correlations, they manage to qualitatively
reproduce the Mott insulating state, the metal-insulator transition, as well as the ferro-
magnetic metallic phase.

The Hubbard model

An approach towards the theoretical understanding of the Mott insulating state and the
metal-insulator transition was achieved by the Hubbard model. This takes into account
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8 Chapter 1. Introduction

the electron kinetic energy as well as electronic on-site interactions in a nondegenerate
tight-binding band. In the second quantised form, the Hubbard Hamiltonian is given by
[1, 2, 3, 4]

HH = Ht + HU = −t
∑
〈ij〉

c†iσcjσ + U
∑

i

ni↑ni↓, (1.1)

where c†iσ and ciσ are the creation and annihilation operators of an electron with spin σ ∈
{↑, ↓} at site i. The symbols ↑ and ↓ denote spin-up and spin-down electrons, respectively.
The occupation number operator writes niσ = c†iσciσ. The first term of the sum is the
kinetic energy determined by the transfer integral t. This is obtained from the overlap of
two orbital wave functions at adjacent sites quantifying the probability that an electron
moves from site i to site j. The second item describes the Coulomb repulsion of two
electrons at the same site via the coupling strength U . At half filling, n =

∑
i niσ = 1, and

in the strong-coupling limit, U � t, the considered band separates into lower and upper
Hubbard band producing the Mott insulator. Second-order perturbation in terms of t/U
yields the Heisenberg model,

HH = J
∑
〈ij〉

SiSj, (1.2)

where J = 4t2/U denotes the superexchange coupling and Si, Sj are spin operators of ad-
jacent sites i, j. The Hubbard model reproduces the metal-insulator transition as electron
correlation strength U/t or band filling are changed. Fillings n = 0 and n = 2 correspond
to the conventional band insulator.

The double-exchange model

The double-exchange model describes the interplay of itinerant electrons in a partially
filled band with magnetic moments localised at certain lattice sites. While accounting
for an interband exchange interaction between the two subsystems, no direct exchange
between the localised moments is regarded [5, 6, 7]. The model Hamiltonian consists of
two components,

HDE = Ht + HHund. (1.3)

While Ht represents the kinetic energy of the conduction electrons as in Eq. (1.1), HHund

specifies Hund’s exchange energy with coupling strength JH . This corresponds to an intra-
ionic interaction between the conduction-electron spin σi and the localised magnetic mo-
ment Si,

HHund = −JH

∑
i

σiSi. (1.4)

The positive sign of JH determines the preferred ferromagnetic alignment of itinerant and
localised spins. The double-exchange model predicts the ferromagnetic metallic phase as



1.1 Transition-Metal Oxides 9

electron itineracy mediates ferromagnetic exchange within the spin system. Further, it
qualitatively explains the increase in resistivity upon the transition from a ferromagnetic
to a paramagnetic phase as the band structure is modified by the magnetic state of the spin
system: At low temperatures the spins are ordered and do not scatter electrons, whereas
at high temperatures spin scattering localises electrons. However, the spin scattering is not
sufficient to reproduce the metal-insulator transition [8, 9]. There is substantial evidence
that additional electron-lattice coupling is required to constitute the insulating state [10].

Orbital degeneracy

The physical properties of transition-metal oxides are determined mainly by the transition-
metal 3d electrons. Atomic d orbitals have fivefold degeneracy, excluding spin. In the
solid, the degeneracy is lifted by the crystal field. In the cubic perovskite lattice the
transition-metal ions are surrounded by six ligand O2− ions in octahedron configuration,
see Fig. 1.1. Because of the negative valence of the ligand ions the d electrons are, in the
direction towards adjacent oxygen ions, subject to a higher crystal field as compared to
other directions. This yields a splitting of the d orbitals into two degenerate eg orbitals
(dx2−y2 , d3z2−r2) and three degenerate t2g orbitals (dxy, dyz, dzx) at lower energy.

Oxygen

T

A

Figure 1.1: Undistorted crystal structure of perovskite transition-metal oxides. T and A
denote transition-metal ion and A-site cation. The dashed lines indicate an O6 octahedron.

Electron-lattice coupling

Considering perovskite transition-metal oxides ATO3 with cation A and transition-metal
ion T , two types of electron-lattice coupling influence the electronic structure: First, the
cation size and hence the tolerance factor of the lattice affects the T−O−T bond angle.
Yet, the one-electron conduction-band width and the transfer amplitude t, thus the elec-
tron kinetic energy, are very sensitive of the bond angle [11]. This compositional effect
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arises from the static crystal structure. Second, dynamical electron-lattice coupling may
localize carriers: The occupation of the d3z2−r2 orbital causes the orthorhombic distortion
of the respective TO6 octahedron as compared to the ideal perovskite structure. This
Jahn-Teller distortion lifts the eg degeneracy by ΔJT . It is associated with orthorhombic
phonon modes. At sufficiently strong coupling the electron is trapped in the self-induced
potential minimum leading to the formation of a bound state called polaron. In case of
high eg electron density coherent long-range Jahn-Teller distortions are observed along
with insulating behaviour. In contrast, the presence of incoherent local lattice distortions
of comparable size is characteristic of the insulating high-temperature phase of colossal-
magnetoresistance compounds. On the transition to the ferromagnetic metallic phase,
however, they gradually vanish [12].

Hybridisation

The orbital overlap of the d-wave functions of a given transition-metal ion and the p-wave
functions of adjacent oxygen ions causes hybridisation. The hybridisation strength depends
on the atomic number of the transition metal, as increasing nuclear charge decreases the
chemical potential of the d electrons and thus the relative energetic difference of d and p
bands. Consequently, the hybridisation of d and p bands is particularly strong in com-
pounds with heavy transition metals like Ni or Cu. The relative energetic position of d
and p bands and the corresponding hybridisation strength have important influence on the
low-energy physics of the Mott insulator. If, on the one hand, the oxygen p level εp lies
far below the transition-metal d level εd, so that the d-electron interaction U is smaller
than the charge-transfer energy Δ = |εd − εp|, the charge gap is determined by U and
low-energy excitations have predominantly d character. This type of compound is referred
to as Mott-Hubbard insulator. If, on the other hand, U > Δ, low-energy excitations are
of the charge-transfer type, creating a hole in the oxygen-p band. This type of insulator
is called charge-transfer insulator. In case of strong hybridisation low-energy excitations
have mixed d and p character.

The perovskite manganites and cobaltites investigated in the present thesis are situated
at the crossover from prototype Mott-Hubbard insulators as the vanadates to canonical
charge-transfer insulators like nickelates or cuprates. Yet, the nature of the charge gap
in manganites and cobaltites is currently a matter of vital debate. The motivation of
this work is to contribute by means of optical spectroscopy experimental evidence to the
subject.

1.2 Interaction of Light with Matter

1.2.1 The Dielectric Tensor

Linearly polarised light reflected by a semi-infinite planar surface becomes elliptically po-
larised with its major axis rotated from the original polarisation direction. In case of a
magnetised ferromagnetic mirror components of rotation and ellipticity which are linear
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functions of the sample magnetisation are referred to as magneto-optic Kerr effect. The ex-
perimental observable, the electric displacement D, is related to the electric field strength
E of the incident light by

D(ω, t) = ε(ω) μ(ω)E(ω, t) , (1.5)

where ε and μ are the dielectric and the magnetic-permeability tensors. At optical frequen-
cies the magnetic susceptibility is usually neglected [13], hence in the following μ ≡ 1.
Consequently, the propagation of electromagnetic waves in a solid is characterised by its
dielectric tensor ε. In case of cubic symmetry, with the magnetisation M parallel to the z
direction and the coordinate axes pointing along the principal axes of the crystal, ε is of
the form

ε =

⎛
⎝ εxx εxy 0

−εxy εxx 0
0 0 εzz

⎞
⎠ . (1.6)

For an absorbing medium the tensor elements are complex, εij = ε1ij + i ε2ij. Further,
εzz ≈ εxx. To first order, the diagonal elements εxx are independent of M describing the
ordinary optical absorption. Ferromagnets exhibit off-diagonal components εxy, which are
to second order proportinal to M and cause the magneto-optic Kerr effect [14]. In the
visible and ultra-violet frequency range the ratio of εxy and εxx is of the order 10−3 to
10−2.

In order to demonstrate the physical meaning of the dielectric tensor, the power P
absorbed by the illuminated volume fraction V of the specimen is regarded [15]:

P (ω, t) = −
∫

V

d3r
d

dt
D(ω, t)E(ω, t). (1.7)

Assuming harmonic time dependence of the field quantities and restricting the following
considerations to the long-wavelength limit, that is neglecting the spatial variation of the
electromagnetic field with respect to interatomic distances, the time-averaged power writes

P =
i ωV

2
Re

(∑
ij

ε∗ijE
∗
j Ei

)
. (1.8)

Imagine incident linearly polarised light as the proportional superposition of right- and
left-circularly polarised (RCP and LCP) electromagnetic waves. Let the two senses of
circular polarisation be defined as

E±(ω, t) = E(ω)(x± iy)e−i ωt, (1.9)

x and y denoting coordinate unit vectors and the superscripts (+) and (−) referring to
RCP and LCP light, respectively. In respect of the two senses of polarisation the power
absorbed is given as
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P± = ωV E2 (ε2xx ± ε1xy) . (1.10)

This result identifies ε2xx and ε1xy as the absorptive parts of the respective tensor elements.
Further transformation yields

ε2xx =
P+ + P−

2ωV E2
,

ε1xy =
P+ − P−

2ωV E2
. (1.11)

To conclude, the absorptive part ε2xx of the diagonal tensor element is proportional to the
sum of absorption of LCP and RCP light. In contrast, the absorptive part ε1xy of the
off-diagonal element is proportional to their difference.

Assuming a sourceless medium and causality, i. e. that E(t) causes D(t), analytical
considerations yield the Kramers-Kronig dispersion relations between real and imaginary
parts of εij [16]:

ε1ij(ω) =
2

π
P

∫ ∞

0

ω′ ε2ij(ω
′)

ω′2 − ω2
dω′,

ε2ij(ω) =
−2 ω

π
P

∫ ∞

0

ε1ij(ω
′)

ω′2 − ω2
dω′, (1.12)

where P denotes the principal value of the integral.

1.2.2 Microscopic Theory

In this section a microscopic description of the origin of magneto-optical phenomena is
presented relating the elements of the dielectric tensor to quantum-mechanical transition
rates. From a microscopic perspective, the interaction of light with a solid is determined
by multipole transitions from occupied electronic states |α〉 with energy �ωα to unoccupied
states |β〉, �ωβ, upon absorption of a photon of energy �ωβα = �(ωβ −ωα). Electric-dipole
transitions are governed by the quantum-number selection rules Δ mL = ± 1 and Δ mS = 0,
corresponding to the change of z component of orbital angular momentum and spin. The
(+) and (−) signs refer to transitions induced by RCP and LCP light, respectively. The
contributions of further multipole-radiation processes are not considered because of their
negligible orders of magnitude.

The quantum-mechanical transition rate Wβα , i. e. the probability per unit time, of
the corresponding transition is determined by time-dependent perturbation theory. The
Hamiltonian of the radiated solid writes

H = H0 + HL = H0 +
∑

i

e

m c
πiAL(ri) +

e2

2 m2c2
A2

L(ri), (1.13)
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where H0 denotes the unperturbed Hamiltonian and HL represents the interaction of the
incident electromagnetic wave with the electrons of the solid at locations ri. e is the ele-
mentary charge, m the electron mass, c the vacuum velocity of light, and AL the vector
potential of the electric field. Regarding elastic light scattering the expression of second or-
der in AL is irrelevant. The kinetic momentum operator πi including spin-orbit interaction
is of the form

πi =
�

i
∇i +

e

c
AM(ri) +

�

4 mc2
σi ×∇iV (ri), (1.14)

where AM and σi are the vector potential of the external magnetic field and the Pauli
spin operator of the electron. The effective one-particle operator V (ri) represents the
potential energy of an electron in the absence of radiation, comprising the impact of both
the periodic-lattice potential and the Coulomb electron-electron interaction on the electron
under consideration. In the one-electron approximation H0 writes

H0 =
∑

i

−�
2∇2

i

2 m
+ V (ri) +

�

4 m2c2

(
�

i
∇i +

e

c
AM(ri)

)
σi ×∇iV (ri). (1.15)

The last term describes the spin-orbit interaction. With respect to the vector potential of
the electric field,

A±
L = c Re

(
E(ω)

i ω
√

2
(x ± iy) e−i ωt

)
, (1.16)

HL is treated as a small periodic perturbation. Consider eigenfunctions |γ〉 = |α〉, |β〉 of
H0, H0|γ〉 = �ωγ|γ〉. Time-dependent perturbation theory yields the transition rates [17]

W±
βα(ω) =

2 π

�
|〈β|H±

L |α〉|2 δ(ω±
βα − ω). (1.17)

The absolute values squared of the transition matrix elements write

|〈β|H±
L |α〉|2 =

E∗Ee2

8 m2ω2
|〈β|π±|α〉|2, (1.18)

where |〈β|π±|α〉|2 ≡ Π±
βα are the absolute values squared of the electric-dipole matrix

elements and the operators π± = πx ± i πy are linear combinations of components of π.
The radiation power absorbed by the solid is

P (ω) = �ω
∑
α,β

W±
βα(ω), (1.19)

the sum extending over all occupied states |α〉 and all unoccupied states |β〉. Hence,
according to Eq. (1.11) the absorptive parts of the tensor elements εij write
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ε2xx(ω) ∝ 1

ω2

∑
α,β

(
Π+

βα + Π−
βα

)
δ(ωβα − ω),

ε1xy(ω) ∝ 1

ω2

∑
α,β

(
Π+

βα − Π−
βα

)
δ(ωβα − ω). (1.20)

Application of the dispersion relations, Eq. (1.12), provides the dispersive parts of εij :

ε1xx(ω) ∝ −
∑
α,β

Π+
βα + Π−

βα

ωβα (ω2
βα − ω2)

,

ε2xy(ω) ∝ 1

ω

∑
α,β

Π+
βα − Π−

βα

ω2
βα − ω2

. (1.21)

Instead of the dielectric tensor ε the physically equivalent optical-conductivity tensor
σ is frequently referred to. The elements transform as

σij(ω) = −i ε0 ω ε(ω) − δij , (1.22)

where ε0 denotes the dielectric constant of vacuum and δ is the Kronecker symbol. The
optical conductivity is restricted by the f-sum rule:∫ ∞

0

σ1xx(ω) dω =
πne2

2m
(1.23)

with electron density n of the specimen, elementary charge e, and free-electron mass m.
The partial spectral-weight integral W of the frequency range from ω1 to ω2 defined as

W =

∫ ω2

ω1

σ1xx(ω) dω (1.24)

is thus proportional to the effective number of electrons excited by photons of respective
energy. According to f-sum rule and charge conservation the spectral weight integral,
evaluated from zero to infinity, is constant.

Equations (1.20) and (1.21) illustrate that magneto-optical effects (εxy �= 0) occur if
the terms substracted do not cancel. This requires a difference in absorption of LCP and
RCP light, that may be evoked by an external magnetic field and (or) spin-orbit coupling.
Bennet and Stern calculate the off-diagonal tensor elements εxy to first order in the external
magnetic field [14]. In order to evaluate Π±

βα they apply the effective-mass approximation.
Including the spin-orbit interaction to first order results in a contribution proportional to
the average value of spin, i. e. linear in the magnetisation M . In ferromagnets the spin-
orbit contribution dominates over the magnetic-field contribution by orders of magnitude
[18]. Consequently, the direct influence of the external magnetic field is neglected in the


