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Chapter 1

Introduction

1.1 Motivation

Simulation of turbulent flows has gained increasing importance due to its incorporation
as a powerful design tool into the industrial development process. Today and in the near
future the computational power needed to model the governing equations of technical
flows are not available. Modeling assumptions need to be introduced to reduce the com-
putational effort to resolve physical effects such as turbulence which acts up to very small
scales but affects the main flow properties like heat transfer or friction coefficients. Be-
side progress in many theoretical and experimental areas turbulence remains the most
important unsolved problem in classical physics.

The importance of turbulence rests upon its significance in natural and technical flows.
Examples of turbulent flows in nature are the gaseous flow in the atmosphere and the
motion of water in the oceans. Also biological flows like cardiac flows at high pulse are
governed by turbulence.

Turbulence is an important factor in nearly all technical flows, especially in flows for
energy transformation. Mankind generates the major part of its energy for transportation
and electricity from fossil energy by using combustion as the transformation process from
chemical energy into heat and electrical power. These combustion processes are mixture
driven and these mixing processes are controlled by turbulence.

Therefore computation and description of these important flows can only be successful if
the underlying physics of turbulence is fully understood. Without the deep appreciation
of turbulence it is not possible to optimize flows and energy transfer with the aim of low
fuel consumption and low exhaust emissions to control pollution.



2 Introduction

Engines and plants are complex technical systems that inherit complex geometries. Hence
it is impossible in most cases to obtain analytical solutions on these applications. Here
numerical simulations are of major importance for a controlled modeling of energy trans-
formation applications. These computations are limited, due to turbulence, since turbu-
lence’s physics are ruled on a large variety of scales. And these scales must be resolved to
describe the turbulence effects of the small scales on the large scale flow properties. Due
to nonlinearities in the governing equations the small scales influence global flow, and are
therefore needed to obtain physical reasonable solutions.

The range of scales depends on the turbulent Reynolds number which represents the ratio
of the nonlinear turbulent convective term to the viscosity in the governing equations. In
many technically flows this ratio is very large and causes the necessity to resolve the small-
est scales of turbulence in numerical simulations of flows. Therefore it requires numerical
calculations on a large number of grid points. The limiting factor in nowadays compu-
tations to compute large Reynolds number turbulent flows are memory and processor
capacity of computational devices.

The main interest in computations are the behavior of flows on large scales. Hence models
for turbulence are needed that represent the turbulence physics on the small scales without
resolving the whole range of turbulent length scales.

1.2 Modeling of Incompressible Flows

Different turbulence modeling strategies were developed in the past. Most of them are
based on phenomenological and empirical assumptions that do not hold in the full ap-
plication range of turbulent flows. A large amount of very different methods has been
established in the past possessing a wide range of complexity.

The oldest one is the statistical approach that is based on the statistical averaging intro-
duced by Osborne Reynolds [68] at the end of the nineteenth century. Reynolds averaging
is introduced in the Navier-Stokes equations and results in a set of equations for the mean
values with new unclosed nonlinear products of fluctuating velocities which stem from
the nonlinear convective terms. These so called Reynolds stresses need to be closed by
modeling assumptions. The different closure models can be characterized by zero, one,
two-equation models and Reynolds stress tensor models, depending on the number of
equations that yield to a closure. Another group of models are the sub-grid scale models
for the large eddy simulation (LES) that were developed at the end of the seventies, when
computational power became accessible. Far a detailed overview of these methods see [76].
If the full range of scales is resolved we speak of direct numerical simulation (DNS) that
is not based on models beyond the Navier-Stokes equations since no empirical closure is
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needed. First DNS calculations on turbulent flows are described by Rogallo [73]. Its lim-
itation lies in its restriction to low Reynolds numbers [51] that are orders of magnitude
below Reynolds numbers in technical applications. In addition only geometrically simple
flows are considered. Therefore DNS is mostly used as an investigative research tool in
turbulence theory.

The third group of turbulence modeling are the two-point or spectral methods, which are
also based on Reynolds averaging. They serve in theoretical investigations of turbulence
since they are usually limited to homogeneous flows and are difficult to apply to flows
with walls which exist in most technical applications.

In the current work we investigate the two-point correlation equations and also refer to
Fourier methods for a validation of analytical obtained models.

1.3 Modeling of Compressible Flows

Turbulent flows in the low Mach number regime show different behavior than in incom-
pressible flows e.g. the decay of homogeneous turbulence is faster. Also in homogeneous
shear flows a lower growth rate of turbulent kinetic energy is observed for compressible
flows. The spreading rate of a compressible shear layer is decreased by compressibility.
These effects need to be included into semi-empirical turbulence models that are applied
to flows in the compressible regime.

Existing turbulence models for the incompressible regime do not reproduce these effects
of compressibility and therefore need to be expanded to take the compressibility into
account. Due to the ”simplicity” of incompressible flow most theoretical and numeri-
cal investigations of turbulent flow were undertaken in the incompressible regime. The
governing equations for mass and momentum decouple from the energy equation in in-
compressible flows, so that a solution of the flow may be obtained only by mass and
momentum transfer. The next step in complexity is to investigate variable density flows
that take into account a time dependent but spatially homogeneous density. A fully com-
pressible flow is characterized by density variations in time and in space. Here we will
limit ourselves to weakly compressible flows in which no shocks occur, not even locally
[40]. This will limit the Mach number which is a ratio of flow velocity to the speed of
sound to less then M = 0.5 to avoid transonic spots. Canuto et al. [16] gives a broad
overview about spectral methods of compressible flows.
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1.4 Methods Involved

A two folded approach is taken in this work. First we construct similarity laws for com-
pressible turbulent flows using symmetry (Lie Group) methods, e.g. see [11], [61], [34] and
[14]. Since the Navier-Stokes equations that describe compressible turbulent flows inherit
a singularity at a Mach number M = 0 we need to expand the governing equations with
asymptotic methods in the Mach number.

Second the governing equations are solved using DNS of incompressible and compressible
flow. Here the Navier-Stokes equations are solved for simple turbulent flows without ap-
plying any closure models. For high accuracy of the results we choose a spectral numerical
method. It is of high accuracy but also limited to simple boundary conditions.

1.5 Previous Work

Early analytical work on compressible turbulent flows was done by Kovasznay [43]. He
introduced the decomposition into modes representing the incompressible and compress-
ible modes and analyzed the relationships between them using a linear theory. Klein [40]
used and asymptotic expansion in Mach number to separate effects that scale in different
orders of Mach number.

First numerical work on DNS of homogeneous turbulence was proceeded by Rogallo [72]
in the incompressible limit and by Feiereisen, Reynolds and Ferziger [23] for compressible
flow, followed by the works of Passot and Pouquet [62] and Delorme [18]. Further on,
the group of Erlebacher, Sarkar, Zhang and Hussaini et al. [80], [78], [79], [20] at ICASE
carried out an asymptotic approach to model the compressible effects and compared the
analytical results with DNS data. They used an expansion in Mach number, e.g. see [40],
of the dependent variables to obtain an equation satisfying incompressible flow to the
leading order in combination with a first order equation that fulfilled the remaining set
of the Navier-Stokes equations. They obtained a correction for homogeneous isotropic
flow that matched the effects of compressibility, from which they derived a model which
is an expansion to the two-equation turbulence model. Similar work with a different
approach was undertaken by Zeman in [97] and [98]. Further detailed DNS and analysis
was proceeded by Blaisdell in [7] and [70] who also focused on the proposition of consistent
initial conditions. All these research covers the low Mach number range M = 0 to M < 0.5.

In the current work we will outline a procedure to gain insight and models for compressible
turbulent flows using first principles only. The results from this new method shows to be
more general and covers the results of previous work in certain limits.
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Chapter 2

Fundamentals of Turbulence

2.1 Navier-Stokes Equations

Fluid flows can be described by transport equations for mass, momentum and energy. The
fundamental equations of fluid mechanics are named the Navier-Stokes equations, and,
for compressible fluids in Cartesian coordinates and tensor notation, taking advantage of
the Einstein summation, the formulation of the continuity equation is

∂ρ

∂t
+

∂ρui

∂xi
= 0 . (2.1)

The conservation of momentum is described by

∂ρuj

∂t
+

∂ρuiuj

∂xi
+

∂p

∂xj
=

∂τij

∂xi
, (2.2)

and the transport equation of internal energy e is given by
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with the stress tensor described by the Stokes relation

τij = µ

(
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∂xj

+
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∂xi
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− 2
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∂uk
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δij (2.4)

and the dissipation

Φ = τij
∂ui

∂xj
. (2.5)
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This system of partial differential equations is closed by the equation of state for an ideal
gas

ρ =
p

RT
. (2.6)

The equation of in its conservation form (2.3) can be rewritten in the primitive variable
p using e = cvT , where cv is the heat capacity at constant volume (and cp is the heat
capacity at constant pressure) and the equation of state. Then we obtain

∂p

∂t
+ ui

∂p

∂xi
+ γp

∂ui

∂xi
= (γ − 1)

[
∂

∂xi

(
k

∂T

∂xi

)
+ Φ

]
. (2.7)

Here γ is the ratio of the heat capacities at constant volume and pressure

γ =
cp

cv

. (2.8)

The relation between the heat capacities and the ideal gas constant R is described by

R = cp − cv . (2.9)

2.2 Non Dimensional Form

After normalization of the independent and dependent variables by their reference values,
ρR for the reference density, uR representing the reference velocity and TR for the reference
temperature, the non-dimensional values are obtained and denoted by a superscript

l∗ =
l

lR
, (2.10)

t∗ =
t · uR

lR
, (2.11)

ρ∗ =
ρ

ρR

, (2.12)

u∗
i =

ui

uR

, (2.13)

p∗ =
p

pR

with pR = ρRu2
R , (2.14)

T ∗ =
T

TR
. (2.15)
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We introduce the non-dimensional Reynolds, Prandtl and Mach number, which are defined
as

Re =
uRLR

νR
, (2.16)

Pr =
cpRµR

λR

, (2.17)

M =
uR

cR
, (2.18)

where cR denotes the reference speed of sound, LR a reference length, νR the reference
dynamic viscosity, cpR the reference specific heat capacity at constant pressure, µR the ref-
erence dynamic viscosity and λR the reference heat conductivity. The conservation equa-
tions of mass, momentum and energy (2.1)-(2.3) can be written in their non-dimensional
form. After dropping the superscripts the following set of equations is obtained:

∂ρ

∂t
+

∂ρui

∂xi

= 0 , (2.19)
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, (2.20)
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∂
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(
k
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+
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Re
Φ . (2.21)

This set of equations cannot be solved analytically for the dependent variables but sim-
ilarity laws can be derived and therefore the equations (2.19)-(2.21) are investigated by
symmetry methods in chapter 3. These analytic results contain constants, ratios of group
parameters and constants from integration, which cannot be fixed by the method of sym-
metries alone and therefore in chapter 4 numerical methods are used from which these
constants are determined by comparison.

2.3 Statistical Averaging

In turbulent flow fluctuations of the dependent variables ui, p and ρ are observed. Depend-
ing on Reynolds number these fluctuations act on rather small length scales and cannot
be resolved in numerical computations for most engineering problems. Since in technical
applications engineers are mostly interested in the flow effects on large scales like drag or
shear stresses on a body or averaged heat transfer coefficients, Reynolds [67] introduced a
statistical averaging. This Reynolds averaging will exemplarily be shown on an arbitrary
variable Z representing the dependent flow variables such as ui, p and ρ.


