
1 Introduction

In the last decades nanoscience emerged as a new research field at the interface
of chemistry and physics. Materials, whose properties were well-known and
understood, show novel and unexpected properties when their size is reduced
from bulk to just a few nanometers in one or more dimensions[1].

In general, two effects are responsible for the change in material properties
upon approaching the nanoscale: First, the surface to volume ratio increases
dramatically when the dimensions shrink to only a few nanometers. For exam-
ple, in nanocrystals with a diameter of about ∼ 2 nm almost half of the atoms
are located at the surface and are available for chemical reactions. At the same
time, surface atoms contribute significantly to the Gibbs free energy of the
nanoparticles, changing their thermodynamic properties. E.g., nanocrystals
show a melting point depression as their size decreases [1].

Second, with sizes of only a few nanometer the assumption of an infinite pe-
riodicity of the crystal lattice is no longer valid. Therefore, electrons and holes
feel a confinement in one, two and three dimensions, and so-called quantum
wells, wires or dots are formed, respectively. Further, since the movement of
charges is restricted spatially, the Coulomb interaction becomes more impor-
tant.

Overall, this means that for given materials, their properties can be tuned
solely by size (and morphology) variation. Perhaps one of the best-known and
extensively studied examples is the size-dependence of the optical band gap
in semiconductor nanocrystals [2].

1.1 Motivation

Over the last decade nanowires (NWs) became the subject of intensive research.
As an advantage to zero dimensional quantum dots, one dimensional NWs
can be used as building elements to arrange hierarchical superstructures for
optical, optoelectronic and electrical instruments. These NWs can function
as both, active devices and interconnections at the same time[3]. In addition,
their internal structure serves as a guide for charge carriers and photons along
one axis. Direct band gap materials are of particular interest for light emission
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applications, since their radiative recombination is converted primarily into
photon emission. Several pioneering studies have demonstrated the use of
NWs, e.g., as gain media for lasers [4], gas sensors [5], photo sensitizers for solar
cells [6], field-effect transistors [7] or as probes for biological tissues [8]. However,
their diameter is typically far above the Bohr radius and thus quantization
effects are less prominent. With the catalyst-based solution-liquid-solid (SLS)
synthesis, NWs with diameters smaller than the Bohr radius have been pre-
pared in larger quantities [9]. Such NWs are of special interest for devices based
on their optical properties since the band gap depends on the diameter, which
is relatively easy to tailor [10–14]. In fact, measurements on ensembles of NWs
revealed an increase of absorption and photoluminescence (PL) peak energies
with decreasing diameter [12–14].

Optical measurements on single NWs can reveal electronic band structure
properties that often remain hidden in averaging experiments on ensembles.
Such measurements show many interesting features, yet not all of them are
fully understood. In CdSe NWs, prepared with wet-chemical methods, struc-
tural variations [10] were observed, as well as fluorescence intensity fluctuations
along individual NWs[15]. Alterations in crystal structure between wurtzite
and zinc blende segments, with different band gaps and offsets, were reported
to lead to a formation of separated quantum mechanical systems, a model
which was used to explain the “hot spots” in the PL signal [15–17], with a blink-
ing behavior similar to quantum dots (QDs). In other experiments, however,
CdSe NWs have been reported to behave like single quantum mechanical
systems[18,19]. The interpretation of fluorescence data is further complicated
by photobrightening effects in the presence of organic ligands[20], by agglom-
erates of colloidal nanoparticles [21] and by variations in ligand coverage, that
may lead to spectral heterogeneity as well as different emission intensities
along the wire [22].

Since micro-electronic devices like transistors in integrated circuits are ap-
proaching the nano scale limit, the traditional “top-down” approach, which
relies on conventional lithography techniques, to create smaller and smaller
templates, from which the device is finally built, becomes extremely expen-
sive [23]. Therefore, the “bottom-up” approach, i.e. building devices from atoms
and molecules, offers a new perspective for the miniaturization of electronic
components [3]. Recent advances in wet-chemical synthesis resulted in applica-
tions of hybrid nanostructures, containing NWs in photovoltaic elements [24],
photocatalysis [25] and electronic devices [26]. However, for that a detailed un-
derstanding of the relation between the morphology of the nanostructure and
its electronic properties is required.
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1.2 Scope of this Work

This thesis has been organized as follows: Chapter 1 provides an introduction.
The second chapter gives a concise overview of the theoretical background
used in this work. The crystalline structure of CdSe and CdS nanowires are
described. Models, which were used to calculate the optical band gap, are
explained and basic terms of electrical measurements in semiconductor devices
are defined.

In the third chapter the experimental methods to synthesize nanowires are
outlined and the equipment used to characterize and manipulate the nano-
structures is briefly described. In particular, parameters of the components,
which comprise the confocal microscope are addressed and explanations for
their particular use are given.

In Chapters 4, 5 and 6 the results of this thesis are presented:
Chapter 4 describes the close connection between the diameter of a NW and

their band gap. A detailed correlation between the morphology and the fluo-
rescence of NWs was established and a model for the shift in the exciton energy
was developed. Further, CdSe-carbon nanotubes hybrids were investigated by
PL spectroscopy.

In Chapter 5, the interplay between the PL and photocurrent (PC) is dis-
cussed. Certain regions of CdS NWs were illuminated to locally create electron-
hole pairs which in turn were separated by a bias or an external electric field.

The subject of chapter 6 are heterojunction solar cells, built from CdSe nano-
crystals as absorbers and poly(3-hexylthiophene-2,5-diyl) (P3HT), a common
hole-conducting polymer in organic photovoltaics. The influence of the CdSe
nanoparticles on the performance of the photovoltaic cell was studied and the
charge generation and diffusion processes were considered.

In Chapter 7, the results are summarized and an outlook for further experi-
ments are given.
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In this chapter fundamental solid state theories, underlying the interpretation
of the experiments in the later chapters, are presented.

2.1 II-VI Nanowires

Nanowires (NWs) are anisotropic nanocrystals, elongated along one axis. The
wires can have any length from a few 100 nm up to several 100 μm. If the
diameter of the wire is small enough to induce quantization effects, they are
also referred to as quantum wires or quasi-1 D structures.

Crystal Structure

At atmospheric pressure II-VI semiconductors, such as CdSe or CdS, exist in
two modifications of their crystal structure: wurtzite (WZ) in a hexagonal pack-
ing and zinc blende (ZB) in a cubic packing. The two structures are sketched
in figure 2.1. CdSe NWs, grown by the SLS method, typically exhibit alter-
nating lattice modifications with average segment lengths of only a few nm
along their axes [10,13]. This is illustrated in figure 2.2 a and b) by transmission
electron microscopy (TEM) images. The two phases differ in their respective
band structure and, in particular, electron affinities, ionization potentials and
fundamental band gaps[15,16,27–29].

The hexagonal structure consists of tetrahedrally coordinated Cd2+ and
Se2– atoms, stacked in the ABAB pattern. Zinc blende is also built up from

CdSe CdS
WZ ZB WZ ZB

a / nm 0.430 0.607 0.414 0.582
b / nm 0.430 0.607 0.414 0.582
c / nm 0.701 0.607 0.675 0.582

space group 186 P63mc 216 F43m 186 P63mc 216 F43m

Table 2.1: Lattice parameters of CdSe and CdS for wurtzite (WZ) and zinc blende (ZB) modifi-
cations.
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Figure 2.1: A sketch of the two possible crystal structures of CdSe: a) Zinc Blende (ZB) and b)

Wurtzite (WZ) unit cell. The Cd2+-ions are shown in yellow, the Se2–-ions are red.

tetrahedrally coordinated atoms, but the structural pattern is ABCABC. The
lattice parameters are given in table 2.1. Difference in inter-atomic distance
between the cubic and hexagonal structure is very small along the growth axis,

<1 Å, making it very difficult to distinguish between the two modifications.
The differences along the a- and b-axis are around 30 % and can therefore be
easily resolved. The space group is denoted with an integer from 1 to 230,
followed by the Hermann-Mauguin notation. The first letter gives the Bravais
lattice (P for primitive centering and F for face centred). The next three numbers
and letters describe the most prominent symmetry operation visible when
projected on one of the high symmetry directions of the crystal.

To determine the crystal structure of individual SLS-grown CdSe NWs
they were deposited either on a copper grid with a thin carbon film or on a
Si3N4-membrane and investigated with a transmission electron microscope
(cf. section 4.1.2). In a TEM the electron beam is focused on a sample and the
transmitted beam is either projected on a fluorescent screen or recorded with
a digital camera. Areas with high electron density, i. e., heavy atoms, scatter
electrons and appear dark in the image. In areas with low electron density, e. g.,
“empty space” and light atoms, the beam passes considerably unhindered and
is recorded with high intensity. Therefore the TEM enables one to measure a
2-D projection of the 3-D crystal structure of the NW.

If the wire has a particular orientation, where the atomic layers are stacked
behind each other, a high lattice contrast is obtained, as exemplarily shown in
figure 2.2 a. Since the NWs are usually randomly oriented by the deposition,
in most cases only one lattice plane can be observed, as shown in figure 2.2 b.

For a better understanding of possible orientations and the alteration be-
tween WZ and ZB segments, TEM images of a junction between these two

20



2.1 II-VI Nanowires

Figure 2.2: a) CdSe NW on a carbon film, the orientation corresponds to the simulated 45◦
image. b) A CdSe NW with an orientation, where the segments cannot be distin-
guished. c) Calculated TEM images, rotated in steps of 15°. The left part of the
wire is zinc blende (ZB), the right segment is wurtzite (WZ). Only orientation in
45°/135° gives a clear distinction between both structures. Orientation at 0°/90°
suggests that stacking faults may occur without changing between the ZB and WZ
packing.
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segments were simulated for different crystallographic orientations of the wire
with the software SimulaTEM 1.3.2 [30]. In the simulation the specimen is cut
into several slices and the propagation of an electron wave is calculated after
interacting with the Coulomb potential of each of the slices. Figure 2.2 c shows
the simulated TEM image of a typical wire segment in different rotations. The
left part of the wire consists of ZB, the right part of WZ, merged together. The
NW was rotated around its growth axis in steps of 15°. The results of the
simulations show that only the orientation at 45° and 135° allows for a clear
distinction between both structures. Unfortunately in real samples stacking
faults may rotate the lattice during growth around its main axis, leading to a
different appearance of the same phase. In addition, both phases appear the
same for different orientations. In the TEM, the substrate may be rotated by
up to 10°, to achieve a favorable orientation.

2.2 Effective Mass Approximation

To calculate the electronic properties of a crystalline nanostructure with many
thousands of atoms, one would have to consider all interactions between ev-
ery atom core and every electron. Since this is not possible with computers
available today, several approximations have to be made.

The effective mass approximation transfers fundamental properties of bulk
to the nano-sized material in a descriptive way. It can be derived from the
nearly free electron approach, assuming the charge in a crystal behaves like a
free electron with a different (“effective”) mass m∗, due to the influence of the
lattice.

The energy of a particle is given by

E =
h̄2k2

2m∗ , (2.1)

with the quasi-momentum k. Without any boundary conditions, the momen-
tum can take any value.

In the next step the influence of the lattice potential is taken into account, i.e.,
the Coulomb interaction of the electrons with the positively charged atom cores
and other electrons in the vicinity. This leads to a phase dependence of the
wave function and a discontinuity of the energy at certain k-vectors. The band
diagrams of CdS and CdSe in the WZ modification are shown in figure 2.3,
calculated by the pseudopotential method[31]. High symmetry points in the
reciprocal space are commonly labeled with capital letters Γ, X, L, U, K and W
and the electronic band structure calculations are typically performed along
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Figure 2.3: Full electronic band diagram for the WZ modification of a) CdS and b) CdSe,
calculated by the pseudopotential method [31].

directions of the reciprocal space connecting such points. According to Bloch’s
theorem the wave functions can be separated into a plane wave and a function
with the periodicity of the lattice:

Ψ(k, r) = eik·r × ψ(k, r) . (2.2)

The effective mass of an electron in the conduction band is deduced from the
energy dispersion E(k) in the reciprocal space. Close to the Γ-Point, where
the quasi-momentum equals zero, the conduction band is approximated by a
parabola. The band curvature is referred to as the reciprocal of the effective
mass:

∂2E/∂k2 =
h̄2

m∗ . (2.3)

The same consideration holds true for holes. Categorized by the valence band
curvature, a distinction is made between heavy, light and split-off holes. For
any given material the effective mass is a function of k and depends on the
crystallographic axis.

In semiconductor-nanostructures an electron and hole can be bound by
Coulomb interaction. Thus they can form a quasi-particle without a net charge,
an exciton. In nanocrystals (NCs) in general and NWs in particular, the energy
of an exciton can be decomposed into the fundamental band gap energy of the
material Eg, the quantization energy Eq and the Coulomb interaction energy
Ec:

Eexciton = Eg + Eq + Ec . (2.4)
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The Coulomb term acts over all coordinates and makes it therefore difficult
to solve the Schrödinger equation. Therefore, the Coulomb interaction is dis-
regarded when the quantization potential is calculated. Consequently, the
electron and the hole do not interact with each other and the quantization en-
ergy is calculated separately for both of them. The Hamiltonian comprises then
the kinetic energy of the electron and the hole in three dimensions, their con-
finement potential in radial direction Ve(r, ϕ) and Vh(r, ϕ) and the Coulomb
interaction between both charges W(�re −�rh).

H =
h̄2

2me
∇2

e + Ve(re, ϕe)− h̄2

2mh
∇2

h + Vh(rh, ϕh) + W(�re −�rh) . (2.5)

Further, the wave function is separated adiabatically into the radial coordinates
r and ϕ on the one hand and the position of the center of mass of the exciton
Z along the growth axis of the wire and the relative motion of the charges
z = ze − zh on the other hand. This is possible, because the confinement energy
in radial direction, is much larger:

Ψ(re, ϕe, rh, ϕh, Z, z) = eiKZψ(z)ψ(re, ϕe)ψ(rh, ϕh) . (2.6)

The wave function, which solves the time-independent Schrödinger equation
is a product of a plane wave along the wire axis and a Bessel function of the
first kind in the radial direction within the wire:

Ψm,kz(r, ϕ, z) = Ce−imϕ Jm

(
βm

R
r
)

eikzz , (2.7)

where C is a normalization constant and βm is the mth zero of Jm(r). For
the ground state of the exciton the values are m = 0 and β0 = 2.408. The
corresponding Hamiltonian is written as

H =
h̄2

2me
∇2

e + Ve(re, ϕe)− h̄2

2mh
∇2

h + Vh(rh, ϕh) . (2.8)

A suitable value for the depth of the potential is chosen for the environment, e.g.,
a ligand shell. Outside the wire, the k-vector is imaginary and the evanescent
wave function is described by a MacDonald function. The continuity condition

Ψ(x)in = Ψ(x)out , (2.9)
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