

Robert Feuerhake (Autor) Synthese und Strukturaufklärung neuer Heterodimetallkomplexe des Niob

https://cuvillier.de/de/shop/publications/2715

Copyright:

Cuvillier Verlag, Inhaberin Annette Jentzsch-Cuvillier, Nonnenstieg 8, 37075 Göttingen, Germany Telefon: +49 (0)551 54724-0, E-Mail: info@cuvillier.de, Website: https://cuvillier.de

1	Einleitung			1
	1.1	Oxe	ometallate der Übergangsmetalle	1
	1	.1.1.	Isopolymetallate	1
	1	.1.2.	Heteropolymetallate	3
	1.2	Thi	ometallate der Übergangsmetalle	5
	1.3	Syn	1these von Thiometallaten des fünfwertigen Nb und Ta	7
	1.4	Cha	alkogenometallate als Ausgangsmaterialien neuer Verbindungen	9
2	A	ufgab	enstellung	15
3	E	rgebni	isse und Diskussion	16
	3.1	Syn	1thesekonzepte	17
	3.2	Das	s Reaktionsverhalten von (NEt ₄) ₄ [Nb ₆ S ₁₇] \mathscr{J} MeCN	18
		Die M	10lekülstruktur von [NbCu5Cl2S4(PiPr3)5] (1)	20
		Die M	10lekülstruktur von [Nb2Cu2Cl2S4(PMe3)5(MeCN)] MeCN (2)	22
		Die M	10lekülstruktur von [Nb2Cu2Cl2S4(PMe3)6] MeCN (<u>3</u>)	24
		Die M	10lekülstruktur von (NEt4)[Nb2Cu6Cl5S6(PPhEt2)6] MeCN (<u>4)</u>	26
		Die M	10lekülstruktur von (NEt4)[Nb2Cu6Cl5S6(PPh ⁿ Pr2)6] 2 MeCN (5)	29
		Die N	Iolekülstruktur von (NEt₄)[Nb₂Cu6Cl₅S6(PPh₂ ⁿ Pr)6] ∯MeCN (<u>6</u>)	30
	3.3	Um	usetzungen von NbCl5 und Nb(OEt)5 mit späten Übergangsmetallen und silylie	erten
	Cha	lkogena	verbindungen	32
	3	.3.1.	Umsetzungen mit Bis-(trimethylsilyl)-chalkogenanen als Chalkogenqu	elle 33
		Die M	10lekülstruktur von [NbCu3Se4(PEt3)4] (7)	34
		Die M	10lekülstruktur von [NbCu6Cl3Se4(PiPr3)6] (8)	36
		Die M	10lekülstruktur von [Nb2Au3Cl3(PiPr2S)6] (9)	38
		Die M	10lekülstruktur von [NbCo ₃ Se ₄ (PPh ₃) ₃ (MeCN) ₃][CoCl ₃ (PPh ₃)] ÅMeCN (<u>1</u>	0) 41
		Die M	10lekülstruktur von [Nb ₂ Co ₁₀ S ₁₉ (PPh ₃) ₁₀](PF ₆) ₂ (<u>11</u>)	44
		Die M	Iolekülstruktur von [Ag ₄ (P(Se) ₂ ⁱ Pr ₂) ₄] (<u>12</u>)	47
	3	.3.2.	Umsetzungen mit Organylsilylchalkogenanen als Chalkogenquelle	49
		Die M	10lekülstrukturen von [NbCu ₂ (QPh) ₆ (PR ₃) ₂] (<u>13</u>)-(<u>20</u>)	53

	Die N	/lolekülstruktur von [Nb2Cu4Se2(Se ⁱ Pr)6Cl2(P ⁿ Pr3)4] (<u>21</u>)	55
	Die N	/Iolekülstruktur von [Nb2Cu6Se2(Se ⁱ Pr)10Cl2(PEt2Me)2] ĎME (22)	58
	Die N	/Iolekülstruktur von [Nb ₂ Ag ₂ Se(Se ⁱ Pr) ₆ Cl ₂ (P ⁱ Pr ₃) ₂] MeCN (<u>23</u>)	61
	Die N	/Iolekülstruktur von [NbAu ₂ Cl ₂ Se(Se ⁱ Pr) ₃ (P(Cl) ^t Bu ₂) ₂] (<u>24</u>)	63
	Die N	/lolekülstruktur von [Nb ₂ Fe ₂ Se ₂ (Se ⁱ Pr) ₄ Cl ₂ (P ⁿ Pr ₃) ₂ (MeCN) ₂] (<u>25</u>)	64
	Die N	/Iolekülstruktur von [Nb2Fe2Se2(SeiPr)4Cl2(PEt3)2(MeCN)2] ØMeCN (26)	68
	Die N	/Iolekülstruktur von [Au4(Se ⁱ Pr)2(PEt3)4][NbCl6] (<u>27</u>)	70
	Die N	/lolekülstruktur von [Au4(SeEt)2(PEt3)4][NbCl6] (<u>28</u>)	72
	3.3.3.	Umsetzungen mit silylierten Pnikogenverbindungen	74
	Die N	/lolekülstruktur von [Ag4(P4Ph4)2(PnPr3)4] (29)	75
	3.4 Un	tersuchungen unter Solvothermalbedingungen	79
	3.4.1.	3.4.1 Die präparative Methode der Solvothermalsynthese	79
	3.4.2.	Umsetzungen unter milden solvothermalen Bedingungen	80
	Die N	/lolekülstruktur von (NEt ₄)[Nb ₂ Cu ₆ Cl ₅ S ₆ (PPh ₃) ₆] (<u>30</u>)	82
	Die N	/olekülstruktur von [NbCu ₅ S₄Cl₂(dppm)₄] ϐCH₃CN (<u>31)</u>	84
	Die N	/lolekülstruktur von (NEt₄)2[Nb10Cu12Cl₄S30(dpppr)6] 6MeCN (<u>32)</u>	88
	3.5 Da	rstellung des Tetraselenoniobates $\stackrel{1}{\leftarrow}$ Li ₃ [NbSe ₄] [4MeCN (<u>33</u>)	94
	Die N	/lolekülstruktur von _← Li₃[NbSe₄] ÅMeCN (<u>33</u>)	94
4	Experir	nenteller Teil	99
	4.1 All	gemeines	99
	4.1.1.	Arbeitstechnik	99
	4.1.2.	Lösungsmittel	99
	4.1.3.	Spektroskopische Untersuchungen und Elementaranalyse	99
	4.2 Da	rstellung der Ausgangsverbindungen	100
	4.2.1.	Reinigung von NEt ₄ Cl $\hat{H}_2O^{[]}$	100
	4.2.2.	Reinigung von CuCl	100
	4.2.3.	Darstellung von CuSCN	100
	4.2.4.	Darstellung von AgSCN	101
	4.2.5.	Darstellung von [AuCl(SMe ₂)]	101

4.2.6.	Darstellung von [CoCl ₂ (PPh ₃) ₂]	101
4.2.7.	Trocknen von FeCl ₂ β H ₂ O	102
4.2.8.	Darstellung von (NEt₄)₄[Nb ₆ S ₁₇] βMeCN	102
4.2.9.	Darstellung von NbCl5	
4.2.10). Darstellung von S(SiMe ₃) ₂	
4.2.11	. Darstellung von Na ₂ Se	103
4.2.12	2. Darstellung von Se(SiMe ₃) ₂	103
4.2.13	 Darstellung von S(Ph)SiMe₃ 	104
4.2.14	l. Darstellung von Se2 ^t Bu2	104
4.2.15	5. Darstellung von NaSe ^t Bu	105
4.2.16	6. Darstellung von Se(ⁱ Pr)SiMe ₃	105
4.2.17	7. Darstellung von Se(Ph)SiMe ₃	106
4.2.18	 Darstellung von Te(Ph)SiMe₃ 	106
4.2.19	9. Darstellung von PMe ₃	
4.2.20). Darstellung von PEt ₃ , P ⁿ Pr ₃ und P ⁱ Pr ₃	107
4.2.21	. Darstellung von PEt ₂ Me	
4.2.22	2. Darstellung von P ^t Bu ₃	
4.2.23	 Darstellung von PClⁱPr₂ 	109
4.2.24	l. Darstellung von P(SiMe ₃) ₂ Ph	110
4.2.25	5. Darstellung von <i>n</i> -Butylpyridiniumchlorid	110
4.2.26	5. Darstellung von <i>n</i> -Butylpyridiniumtetrafluoroborat	111
4.3 l	Darstellung der Komplexverbindungen	111
4.3.1.	Darstellung von [NbCu ₅ Cl ₂ S ₄ (P ⁱ Pr ₃) ₅] (<u>1</u>)	111
4.3.2.	Darstellung von [Nb ₂ Cu ₂ Cl ₂ S ₄ (PMe ₃) ₅ (MeCN)] MeCN (<u>2</u>)	111
4.3.3.	Darstellung von [Nb ₂ Cu ₂ Cl ₂ S ₄ (PMe ₃) ₆] MeCN (<u>3</u>)	112
4.3.4.	Darstellung von (NEt4)[Nb2Cu6Cl5S6(PEt3)6] &CH3CN (I)	112
4.3.5.	Darstellung von (NEt4)[Nb2Cu6Cl5S6(PPhEt2)6] ĆH3CN (4)	112
4.3.6.	Darstellung von (NEt4)[Nb2Cu6Cl5S6(PPh ⁿ Pr2)6]	112
4.3.7.	Darstellung von (NEt₄)[Nb₂Cu6Cl₅S6(PPh₂ ⁿ Pr)6]	113
4.3.8.	Darstellung von [NbCu ₃ Se ₄ (PEt ₃) ₄] (<u>7</u>)	113
4.3.9.	Darstellung von [NbCu ₆ Cl ₃ Se ₄ (P ⁱ Pr ₃) ₆] (<u>8</u>)	113

4.3	5.10.	Darstellung von [Nb ₂ Au ₃ Cl ₃ (P ⁱ Pr ₂ S) ₆] (<u>9</u>)	113
4.3	5.11.	Darstellung von [NbCo ₃ Se ₄ (PPh ₃) ₃ (MeCN) ₃][CoCl ₃ (PPh ₃)] & MeCN (<u>1</u>	<u>0</u>)114
4.3	5.12.	Darstellung von [Nb ₂ Co ₁₀ S ₁₉ (PPh ₃) ₁₀](PF ₆) ₂ (<u>11</u>)	114
4.3	5.13.	Darstellung von $[Ag_4(P(Se)_2^iPr_2)_4]$ (<u>12</u>)	114
4.3	5.14.	Darstellung von [NbCu ₂ (SePh) ₆ (PEt ₃) ₂] (<u>13</u>)	115
4.3	5.15.	Darstellung von [NbCu ₂ (SePh) ₆ (PMe ₃) ₂] (<u>14</u>)	115
4.3	5.16.	Darstellung von [NbCu ₂ (SePh) ₆ (P ⁿ Pr ₃) ₂] (<u>15</u>)	115
4.3	5.17.	Darstellung von [NbCu ₂ (SePh) ₆ (P ⁱ Pr ₃) ₂] (<u>16</u>)	115
4.3	5.18.	Darstellung von [NbCu ₂ (SePh) ₆ (PPhEt ₂) ₂] (<u>17</u>)	116
4.3	5.19.	Darstellung von [NbCu ₂ (SePh) ₆ (P ^t Bu ₃) ₂] (<u>18</u>)	116
4.3	5.20.	Darstellung von $[NbCu_2(SPh)_6(PMe_3)_2]$ (19)	116
4.3	5.21.	Darstellung von $[NbCu_2(SPh)_6(P^nPr_3)_2]$ (20)	117
4.3	5.22.	Darstellung von [Nb ₂ Cu ₄ Se ₂ (Se ⁱ Pr) ₆ Cl ₂ (P ⁿ Pr ₃) ₄] (<u>21</u>)	117
4.3	.23.	Darstellung von [Nb ₂ Cu ₆ Se ₂ (Se ⁱ Pr) ₁₀ Cl ₂ (PEt ₂ Me) ₂] DME (<u>22</u>)	117
4.3	5.24.	Darstellung von [Nb ₂ Ag ₂ Se(Se ⁱ Pr) ₆ Cl ₂ (P ⁱ Pr ₃) ₂] MeCN (23)	118
4.3	5.25.	Darstellung von [NbAu ₂ Cl ₂ Se(Se ⁱ Pr) ₃ (P(Cl) ^t Bu ₂) ₂] (<u>24</u>)	118
4.3	6.26.	Darstellung von [Nb ₂ Fe ₂ Se ₂ (Se ⁱ Pr) ₂ Cl ₂ (P ⁿ Pr ₃) ₂ (MeCN) ₂] (25)	118
4.3	5.27.	Darstellung von $[Nb_2Fe_2Se_2(Se^iPr)_2Cl_2(PEt_3)_2(MeCN)_2]$ $\pounds MeCN$ (26).	119
4.3	5.28.	Darstellung von $[Au_4(Se^iPr)_2(PEt_3)_4][NbCl_6]$ (27)	119
4.3	5.29.	Darstellung von [Au ₄ (SeEt) ₂ (PEt ₃) ₄][NbCl ₆] (<u>28</u>)	119
4.3	5.30.	Darstellung von $[Ag_4(P_4Ph_4)_2(P^nPr_3)_4]$ (29)	120
4.3	5.31.	Darstellung von (NEt ₄)[Nb ₂ Cu ₆ Cl ₅ S ₆ (PPh ₃) ₆] (<u>30</u>)	120
4.3	5.32.	Darstellung von [NbCu ₅ S ₄ Cl ₂ (dppm) ₄] \$CH ₃ CN (<u>31</u>)	120
4.3	.33.	Darstellung von (NEt ₄) ₂ [Nb ₁₀ Cu ₁₂ Cl ₄ S ₃₀ (dpppr) ₆] β MeCN (<u>32</u>)	120
4.3	5.34.	Darstellung von Li_3 [NbSe ₄] AMeCN (<u>33</u>)	121
Kr	istall	strukturuntersuchungen	122
		-	
5.1	Allş	zemeines	122
5.2	Kris	stallographische Daten	124
5.2	2.1.	$[NbCu_5Cl_2S_4(P^iPr_3)_5]$ (1)	124

5

5.2.2.	[Nb2Cu2S6(PMe3)5(MeCN)] MeCN (2)	
5.2.3.	[Nb2Cu2S6(PMe3)6] MeCN (<u>3</u>)	
5.2.4.	(NEt ₄)[Nb ₂ Cu ₆ Cl ₅ S ₆ (PPhEt ₂) ₆] CH ₃ CN (<u>4</u>)	
5.2.5.	(NEt ₄)[Nb ₂ Cu ₆ Cl ₅ S ₆ (PPh ⁿ Pr ₂) ₆] 2CH ₃ CN (<u>5</u>)	
5.2.6.	(NEt ₄)[Nb ₂ Cu ₆ Cl ₅ S ₆ (PPh ₂ ⁿ Pr) ₆] &CH ₃ CN (<u>6</u>)	
5.2.7.	[NbCu ₃ Se ₄ (PEt ₃) ₄] (<u>7</u>)	
5.2.8.	$[NbCu_6Cl_3Se_4(P^iPr_3)_6]$ (8)	147
5.2.9.	$[Nb_2Au_3Cl_3(P^iPr_2S)_6]$ (9)	
5.2.10.	[NbCo ₃ Se ₄ (PPh ₃) ₃ (MeCN) ₃][CoCl ₃ (PPh ₃)] ⁴ MeCN (<u>10</u>)	
5.2.11.	[Nb ₂ Co ₁₀ S ₁₉ (PPh ₃) ₁₀](PF ₆) ₂ (<u>11</u>)	
5.2.12.	$[Ag_4(P(Se)_2^iPr_2)_4]$ (<u>12</u>)	
5.2.13.	$[NbCu_2(SePh)_6(PEt_3)_2]$ (13)	
5.2.14.	[NbCu ₂ (SePh) ₆ (PMe ₃) ₂] (<u>14</u>)	
5.2.15.	$[NbCu_2(SePh)_6(P^nPr_3)_2]$ (15)	
5.2.16.	$[NbCu_2(SePh)_6(P^iPr_3)_2]$ (<u>16</u>)	
5.2.17.	$[NbCu_2(SePh)_6(PPhEt_2)_2] (17)$	
5.2.18.	$[NbCu_2(SePh)_6(P^tBu_3)_2]$ (18)	
5.2.19.	[NbCu ₂ (SPh) ₆ (PMe ₃) ₂] (<u>19</u>)	
5.2.20.	$[NbCu_2(SPh)_6(P^nPr_3)_2]$ (20)	
5.2.21.	$[Nb_2Cu_4Se_2(Se^iPr)_6Cl_2(P^nPr_3)_4]$ (21)	
5.2.22.	[Nb ₂ Cu ₆ Se ₂ (Se ⁱ Pr) ₁₀ Cl ₂ (PEt ₂ Me) ₂] ĎME (<u>22</u>)	
5.2.23.	$[Nb_2Ag_2Se(Se^iPr)_6Cl_2(P^iPr_3)_2]$ (23)	
5.2.24.	$[NbAu_2Cl_2Se(Se^iPr)_3(P(Cl)^tBu_2)_2] (\underline{24}) \dots$	
5.2.25.	$[Nb_2Fe_2Se_2(Se^iPr)_2Cl_2(P^nPr_3)_2(MeCN)_2]$ (25)	
5.2.26.	[Nb ₂ Fe ₂ Se ₂ (Se ⁱ Pr) ₂ Cl ₂ (PEt ₃) ₂ (MeCN) ₂] ² MeCN (<u>26</u>)	
5.2.27.	[Au ₄ (Se ⁱ Pr) ₂ (PEt ₃) ₄][NbCl ₆] (<u>27</u>)	
5.2.28.	[Au ₄ (SeEt) ₂ (PEt ₃) ₄][NbCl ₆] (<u>28</u>)	
5.2.29.	$[Ag_4(P_4Ph_4)(P^nPr_3)_4]$ (29)	
5.2.30.	$(NEt_4)[Nb_2Cu_6Cl_5S_6(PPh_3)_6]$ (<u>30</u>)	
5.2.31.	[NbCu ₅ Cl ₂ S ₄ (dppm) ₄]	
5.2.32.	(NEt4)2[Nb10Cu12Cl4S30(dpppr)6] 6MeCN (<u>32</u>)	217

	5.2.33.	Li₃[NbSe₄] ∯MeCN (<u>33</u>)	222
6	Zusam	menfassung	224
7	Anhang	g	233
	7.1 Ve	rwendete Abkürzungen	233
	7.1.1.	Allgemeine Abkürzungen	233
	7.1.2.	NMR-Spektroskopie	234
	7.1.3.	IR-Spektroskopie	234
	7.2 Nu	merierung der Verbindungen	235
8	Literatu	ır	237