Inhaltsverzeichnis

Symbolverzeichnis		
1 Einlei	tung und Zielsetzung der Arbeit	1
2 Mathe	ematische Modellbildung des Antriebssystems	5
2.1 V	ereinfachte hydrodynamische Kupplung	5
2.1.1	Allgemeine Grundlagen	5
2.1.2	Stand der Forschung	7
2.2 M	odell des Drehstrom-Asynchronmotors	12
2.2.1	Modellierung	12
2.2.2	Bestimmung der Maschinenparameter	21
2.3 N	ichtlineares Antriebsstrangmodell	26
2.3.1	Modellierung	26
2.3.2	Analytische Untersuchung des kupplungsabtriebsseitigen mechanischen	
	Systems im Frequenzbereich	29
3 Füllm	engenabhängige Modellierung der hydrodynamischen Kupplung	33
3.1 Pa	rametrische Modellierung von Eingrößensystemen	33
3.1.1	Statische Modellierung.	33
3.1.2	Dynamische Modellierung – linear	34
3.1.3	Dynamische Modellierung – nichtlinear	35
3.2 Pa	rametrische Modellierung von Mehrgrößensystemen	38
3.2.1	Lineare Modellierung.	38
3.2.2	Nichtlineare Modellierung.	39
3.3 M	odellberechnung der hydrodynamischen Kupplungskennlinien	41

3.	3.1	Modell nach Wolf	41
3.	3.2	Modell nach Kickbusch	43
3.	3.3	Modell nach Hasselgrubert	44
3.	3.4	Erweiterung des Modells nach Hasselgrubert mit variablem Reibungsbeiwert der Flüssigkeit	45
3.	3.5	Einfluss des Füllungsgrads	49
3.4	En	tscheidungsunterstützung für das endgültige Kupplungsmodell	53
4 Sy	sten	nidentifikation der hydrodynamischen Kupplung	55
4.1	Gr	rundlagen der Identifikation	55
4.2	Pa	rameterschätzung	56
4.	2.1	Methode der kleinsten Quadrate.	56
4.	2.2	Methode der kleinsten instrumentellen Variablen	58
4.	2.3	Methode der Genetischen Algorithmen	59
5 Aı	ıfba	u des Versuchsstandes	69
5.1	Ve	ersuchsstand	69
5.	1.1	Antriebsmaschine	70
5.	1.2	Arbeitsmaschine	70
5.	1.3	Hydrodynamische Kupplung	72
5.2	Aı	nlassen vom Asynchronmotor	74
5.3	Re	egelung der Gleichstrommaschine	74
5.4	M	ess- und Rechentechnik	77
6 E	xpe	rimentelle Bestimmung des Übertragungsverhaltens	79
6.1	Sta	ationäres Verhalten der hydrodynamischen Kupplung	79
		ynamisches Verhalten der hydrodynamisches Kupplung	0.1

6.2.	2.1 Verhalten der hydrodynamischen Kupplung beim Hochlauf	81
6.2.	2.2 Verhalten der hydrodynamischen Kupplung bei einer rechteck	xförmigen
	Erregung der Abtriebsseite	86
7 Ver	rgleich Simulation/Experiment	91
7.1	Stationärer Vorgang	91
7.2	Hochlaufvorgang	95
7.3	Rechteckförmige Erregung der Arbeitsseite	98
7.4	Verallgemeinerung des neuen Modells der hydrodynamischen Ku	ipplung102
7.4.	1.1 Simulationsmodell	102
7.4.	4.2 Messungen an der Shredderanlage	109
7.4.	1.3 Hochlaufsimulationen der Shredderanlage	109
7.4.	1.4 Einfluss des Massenverhältnisses zwischen Motor- und Rotor	masse113
7.4.	4.5 Einfluss der Kennlinienparameter	115
8 Zus	sammenfassung	117
Literaturverzeichnis 119		
Anhan	ng	125