

Solomon Mamo Geneme (Autor)

Molecular genetics analysis of in vitro produced preimplantation stage_Bovine embryos for developmental competence

https://cuvillier.de/de/shop/publications/2816

Copyright:

Cuvillier Verlag, Inhaberin Annette Jentzsch-Cuvillier, Nonnenstieg 8, 37075 Göttingen, Germany

Telefon: +49 (0)551 54724-0, E-Mail: info@cuvillier.de, Website: https://cuvillier.de

Co	Contents			
Ab	Abstract			
Lis	List of abbreviations			
Lis	List of tables			
Lis	List of figures			
	1	Introduction	1	
	2	Literature review	3	
	2.1	Developmental competence	3	
	2.2	In vitro embryo production	5	
	2.2.1	Background and uses of in vitro embryo production	5	
	2.2.1.1	Aspects of in vitro oocyte maturation (IVM)	6	
	2.2.1.2	Factors in in vitro fertilization (IVF)	8	
	2.2.1.3	In vitro culture (IVC) and developmental competence	9	
	2.2.2	Current efficiency of in vitro production	9	
	2.2.3	In vitro production and embryo quality	11	
	2.3	Gene expression and developmental genetics	12	
	2.3.1	Gene expression during preimplantation embryo development	13	
	2.3.1.1	Maternal gene activation and developmental control	13	
	2.3.1.2	Embryonic gene activation and development control	14	
	2.3.2	Oocyte and blastocyst related transcripts	15	
	2.3.2.1	Transcripts expressed in oocytes	16	
	2.3.2.2	Blastocyst specific transcripts	18	
	2.3.3	Traditional methods of gene expression analyses and limitations	19	
	2.3.4	Microarray and scope limitations	20	
	2.3.4.1	Applications of microarray to preimplantation development	22	
	2.3.5	RNA demand and amplification	23	
	2.3.5.1	RNA input and the need for probe amplification	23	

2.3.5.2	Probe amplification methods	25
2.3.5.3	Applications of in vitro transcription and input requirements	25
2.3.5.4	Causes of variations in amplification efficiency	26
2.3.6	Gene mapping and technical developments	29
2.3.6.1	Radiation hybrid mapping	30
2.3.6.2	Potential applications and current fortresses of gene mapping	31
3	Materials and Methods	32
J	Materials and Methods	32
3.1	Materials	32
3.1.1	Embryos	32
3.1.2	Materials for laboratory analyses	32
3.1.2.1	Chemicals, kits, Biological and other materials	32
3.1.2.2	Reagents and media	34
3.1.3	Equipment	39
3.1.4	Used softwares	40
3.2	Methods of sample preparation and molecular analyses	40
3.2.1	Bovine embryo production and sample preparation	40
3.2.1.1	Oocyte recovery and in vitro maturation	40
3.2.1.2	Sperm preparation and capacitation	41
3.2.1.3	In vitro fertilization	41
3.2.1.4	In vitro culture	42
3.2.1.5	Embryo quality and sample preparation	43
3.2.2	General molecular analyses methods	44
3.2.2.1	RNA isolation and complementary DNA synthesis	44
3.2.2.2	Primer design and PCR reactions	45
3.2.2.3	PCR reactions and product analyses	45
3.2.2.4	PCR product purification	46
3.2.2.5	Cloning PCR products	46
3.2.2.6	Colony screening and plasmid DNA isolation	47
3.2.2.7	Sequencing and product confirmation	48
3.2.3	Real time quantitative PCR	48

3.2.4	In vitro transcription and RNA amplification	49
3.2.4.1	RNA isolation and first strand synthesis	50
3.2.4.2	Second strand synthesis and global PCR amplification	50
3.2.4.3	PCR products purification	50
3.2.4.4	In vitro transcription and reaction purification	51
3.2.5	Microarray hybridization techniques and result analyses	51
3.2.5.1	Target preparation	51
3.2.5.2	Slide preparation and spotting the array	52
3.2.5.3	Prehybridization of the slides	58
3.2.5.4	Aminoallyl labelling and dye coupling	58
3.2.5.5	Hybridization of cDNA microarrays	59
3.2.5.6	Washing the slides	59
3.2.5.7	Image capture and quantitation	59
3.2.6	Gene mapping	60
3.2.6.1	Gene selection and product amplification	60
3.2.6.2	Loci prediction and radiation hybrid mapping	61
3.2.7	Statistical analyses	61
3.2.7.1	Amplification yield and real time PCR results	61
3.2.7.2	Microarray gene expression results	62
4	Results	63
4.1	Common analytical issue	63
4.1.1	Real time PCR analysis	63
4.1.2	Microarray experiment	64
4.2	RNA amplification results	68
4.2.1	Amplified RNA yield	68
4.2.2	Transcript representation	69
4.2.2.1	Analysis of amplification results by microarray	69
4.2.2.2	Expression of house keeping genes	71
4.2.2.3	Real time PCR evaluation of amplification results	72
4.3	Global analysis for transcripts of developmental competence	75

4.3.1	Genes by expression status and functional category	77
4.3.2	Clustering the genes by their expression pattern	80
4.3.3	Confirmation analyses for differentially expressed genes	83
4.4	Retinoid X receptors and embryo quality	85
4.5	Bovine gene mapping	88
5	Discussion	93
5.1	RNA amplification and transcript representation	93
5.2	Microarray analyses and transcripts of developmental competence	99
5.2.1	Array arrangement and statistical implications	99
5.2.2	Molecular analyses for the developmental competence	100
5.3	Retinoid X receptors and embryo quality	105
5.4	Gene mapping	108
6	Summary	112
7	Zusammenfassung	116
8	References	120