Inhaltsverzeichnis

Einleitung

1	Die	Neutr	onendiffusionsgleichungen	5
	1.1	Die ko	ontrollierte Kernspaltung	5
		1.1.1	Die Absorption	11
		1.1.2	Die Streuung	13
		1.1.3	Die Leckage	14
		1.1.4	Die Kritikalität	14
	1.2	Die H	erleitung des zu lösenden Gleichungssystems	16
		1.2.1	Kernphysikalische Größen und Grundbegriffe	16
		1.2.2	Die monoenergetische Neutronendiffusionsgleichung	19
		1.2.3	Die Neutronendiffusionsgleichungen in G Energiegruppen	21
		1.2.4	Die Neutronendiffusionsgleichungen in zwei Energiegruppen	24
		1.2.5	Der Eigenwert λ	25
		1.2.6	Das Ficksche Gesetz	27
		1.2.7	Darstellung des zu lösenden Gleichungssystems in Matrixform	36
	1.3	Das ve	erwendete Reaktormodell	37
	1.4	Einige	e Nebenbedingungen	40
		1.4.1	Die Übergangsbedingungen	40
		1.4.2	Die Symmetriebedingungen	41
		1.4.3	Die Randbedingungen	44
		1.4.4	Die Normierungsbedingung	50

1

2	Das	Welle	endigital-Konzept	51
	2.1	Die G	rundidee der Wellendigital-Strukturen	52
		2.1.1	Die Digitalisierung	55
		2.1.2	Die Wellengrößen	58
	2.2	Die nu Konze	amerische Lösung gewöhnlicher Differentialgleichungen mit dem Wellendigital- pt	61
		2.2.1	Der Entwurf einer Referenzschaltung	63
		2.2.2	Die Überführung der Referenzschaltung in eine Wellendigital-Struktur	64
		2.2.3	Die Rückgewinnung der ursprünglich gesuchten Größen aus den Wellen- größen	69
	2.3	Die St Wortlä	abilität der Wellendigital-Struktur unter der Voraussetzung unbegrenzter ängen	71
		2.3.1	Die Stabilität der Referenzschaltung	71
		2.3.2	Die Stabilität der Wellendigital-Struktur	72
		2.3.3	Der Zusammenhang zwischen der Stabilität der Referenzschaltung und der Stabilität der Wellendigital-Struktur	73
	2.4	Die St	abilität der Wellendigital-Struktur bei endlicher Koeffizienten-Wortlänge .	74
		2.4.1	Die Problematik der Koeffizienten-Quantisierung	75
		2.4.2	Definition der eindimensionalen Passivität eines Wellendigital-Äquivalents	76
		2.4.3	Die Passivitätseigenschaften der einzelnen Wellendigital-Äquivalente	81
		2.4.4	Der Entwurf eines Adaptors, der sich auch bei endlicher Koeffizienten- Wortlänge energieneutral verhält	87
	2.5	Die St	abilität der Wellendigital-Struktur bei endlicher Signal-Wortlänge	90
		2.5.1	Geeignete Rundungsoperationen	93
		2.5.2	Geeignete Überlauf-Korrekturen	96
	2.6	Die St	abilität der Wellendigital-Struktur bei endlicher Speicher-Wortlänge	100
		2.6.1	Die Vereinfachung der Wellendigital-Struktur	103
		2.6.2	Zusammenfassung und Ergänzung der Stabilitäts-Untersuchungen	105

	2.7	Die numerische Lösung partieller Differentialgleichungen mit dem Wellendigital- Konzept		
		2.7.1	Definition der mehrdimensionalen Passivität eines Schaltungselements im ursprünglichen Koordinatensystem	108
		2.7.2	Die Koordinatentransformation	113
		2.7.3	Definition der mehrdimensionalen Passivität eines Schaltungselements im neuen Koordinatensystem	117
		2.7.4	Definition der mehrdimensionalen Passivität eines Wellendigital-Äquiva- lents	124
		2.7.5	Vereinfachte Passivitätsbedingungen für nicht-reaktive Schaltungselemen- te und deren Wellendigital-Äquivalente	128
3	Die chu	Anwe ngen	ndung des Wellendigital-Konzepts auf die Neutronendiffusionsglei	- 131
	3.1	Die "I	Hyperbolisierung" des zu lösenden Gleichungssystems	133
		3.1.1	Die Klassifizierung der Neutronendiffusionsgleichungen	133
		3.1.2	Das Hinzufügen zeitlicher Ableitungsterme	134
		3.1.3	Eine Rechtfertigung der "Hyperbolisierung"	136
	3.2	Der E	ntwurf einer Referenzschaltung	136
		3.2.1	Der Entwurf des reziproken Teils der Referenzschaltung	138
		3.2.2	Der Entwurf des nicht-reziproken Teils der Referenzschaltung	145
	3.3	Die Ü	berführung der Referenzschaltung in eine Wellendigital-Struktur	149
		3.3.1	Die Wellendigital-Äquivalente der idealen Spulen	149
		3.3.2	Die Wellendigital-Äquivalente der ohmschen Widerstände	153
		3.3.3	Das Wellendigital-Äquivalent des idealen Gyrators	159
		3.3.4	Die Wellendigital-Äquivalente der Reihenschaltungen	161
		3.3.5	Die Wellendigital-Äquivalente der Parallelschaltungen	170
		3.3.6	Die Wellendigital-Äquivalente der idealen Übertrager	175
		3.3.7	Das Problem der verzögerungsfreien gerichteten Schleifen	179

		3.3.8	Die Wellendigital-Äquivalente der Jaumann-Strukturen	183
		3.3.9	Das Wellendigital-Äquivalent des Koppel-Viertors	191
		3.3.10	Die Wellendigital-Struktur zur Berechnung der Neutronendiffusionsglei- chungen	228
	3.4	Die Ri der We	ückgewinnung der ursprünglich gesuchten Größen und die Vereinfachung ellendigital-Struktur	234
		3.4.1	Die Rückgewinnung der Neutronenflussdichten und Neutronenstromdich- ten aus den Wellengrößen	234
		3.4.2	Die Normierung der Neutronenflussdichten und Neutronenstromdichten .	235
		3.4.3	Die Vereinfachung der Wellendigital-Struktur	237
4	Der	Welle	ndigital-Algorithmus	245
	4.1	Ein ve	reinfachtes Reaktormodell	246
	4.2	Die sy Gleich	stematische Umsetzung der graphischen Spezifikation in mathematische ungen	249
		4.2.1	Die Grundgleichungen zur Berechnung der Wellengrößen	251
		4.2.2	Die Grundgleichung zur Rückgewinnung der Neutronenflussdichten und der Neutronenstromdichten aus den Wellengrößen	258
	4.3	Die In	itialisierung und die Randbehandlung	260
		4.3.1	Die Initialisierung	263
		4.3.2	Die Randbehandlung am Außenrand	267
		4.3.3	Die Randbehandlung an der Symmetrieebene	274
	4.4	Die nu	nmerische Bestimmung der Normierungskonstante und des Eigenwerts	278
		4.4.1	Die Normierungskonstante c_N	280
		4.4.2	Der Eigenwert λ	281
	4.5	Der Pi	rogrammablauf	282
		4.5.1	Veränderungen im Programmablauf bei Parallelverarbeitung	288
	4.6	Die Ui	msetzung der ursprünglichen Wellendigital-Struktur in einen Algorithmus .	290
	4.7	Hinwe	ise zur Durchführung eines Korrektheitsbeweises	301

5	5 Simulationsergebnisse			305
	5.1	Die Be	erechnung eines plattenförmigen Reaktormodells aus nur einem Material .	307
		5.1.1	Die Referenzlösung	308
		5.1.2	Die Wellendigital-Lösung	313
	5.2	Die Be angeor	erechnung eines plattenförmigen Reaktormodells mit zwei symmetrisch edneten Materialbereichen	322
		5.2.1	Die Referenzlösung	323
		5.2.2	Die Wellendigital-Lösung	332
	5.3	Die Be	erechnung eines würfelförmigen Reaktormodells aus einem Material \ldots	338
		5.3.1	Die Referenzlösung	339
		5.3.2	Die Wellendigital-Lösung	343
	5.4	Die Be	erechnung des vereinfachten Modells eines Leichtwasser-Reaktors $\ .\ .\ .$	348
		5.4.1	Die Wellendigital-Lösung	349
Zυ	ısam	menfas	ssung	361

Anhang	

Α	Ans	ätze zur analytischen Berechnung der Neutronendiffusionsgleichungen	367	
	A.1	Die Berechnung eines plattenförmigen Reaktormodells aus nur einem Material	368	
	A.2	Die Berechnung eines plattenförmigen Reaktormodells mit zwei symmetrisch angeordneten Materialbereichen	376	
	A.3	Die Berechnung eines würfelförmigen Reaktormodells aus einem Material $\ .\ .\ .$	392	
Abbildungsverzeichnis 40			401	
Tabellenverzeichnis			409	
Fo	Formelzeichen und Abkürzungen			
Li	Literaturverzeichnis 4			