1	Ein	leitung		1		
2	Definitionen und Grundlagen					
	2.1		lische Struktur	12		
	2.2	Primä	ires Gitter und Einheitszelle	13		
		2.2.1	Beispiele von primären Gittern	14		
	2.3	Rezipi	rokes Gitter	15		
		2.3.1	Beispiele von reziproken Gittern	17		
	2.4	Brillo	uin-Zone	18		
		2.4.1	Beispiele von Brillouin-Zonen	19		
		2.4.2	Nicht-reduzierbare Brillouin-Zone	19		
	2.5	Geom	etrien, Materialparameter und Maxwell-Gleichungen	20		
		2.5.1	Geometrie und Materialparameter	21		
		2.5.2	Maxwell-Gleichungen	24		
3	1D-	period	lische Struktur	27		
	3.1	Mikro	streifenleitung mit geätzten kreisförmigen Aperturen	27		
		3.1.1	Physikalische Vorgänge	27		
		3.1.2	Entwurf und Dimensionierung der Anordnung	31		
		3.1.3	Ergebnisse und deren messtechnische Verifikation	32		
			3.1.3.1 Vorzugsrichtung der Abstrahlung	37		
		3.1.4	Modellierung von physikalischen Vorgängen in Kristallen	41		
			3.1.4.1 Feldverteilung innerhalb der 1D-			
			periodischen Struktur an der oberen und			
			unteren Stoppbandgrenze	41		
			3.1.4.2 Untersuchung der Gruppenlaufzeit in einer			
			1D-periodischen Struktur	43		

	3.2	Berechnung dielektrischer Streifenwellenleiter mit 1D-	
		periodischen Strukturen	
		3.2.1 Ergebnisse und Messungen 50	
		3.2.1.1 Einkopplungsanordnung und Messergebnisse 5	3
4	2D-	periodische Strukturen unendlicher Dicke und planare	
	Ant	tennenstrukturen 60)
	4.1	Berechnung im Fall eines transversal elektrischen (TE) Feldes . 6	1
	4.2	Vorgehensweise bei der Ermittlung der Ergebnisse 6'	7
		4.2.1 Festlegung der verwendeten Anzahl der ebenen Wellen . 69	9
		4.2.1.1 Konvergenzverhalten des Rechenverfahrens . 69	9
	4.3	Ergebnisse für den TE-Fall: Das Dreiecksgitter	1
		4.3.1 Variation von ϵ_{r_h} 7	1
		4.3.2 Variation der Periode $a \dots 7$	4
		4.3.3 Variation des Radius R_G	6
		4.3.4 Variation von ϵ_{r_a}	7
		4.3.5 Dreidimensionale Darstellung des Banddiagramms 79	9
	4.4	Berechnung im Fall eines transversal magnetischen (TM) Feldes 80	Э
	4.5	Ergebnisse für den TM-Fall: Das Dreiecksgitter	1
		4.5.1 Variation von ϵ_{r_h}	1
		4.5.2 Variation der Periode $a \dots $	1
		4.5.3 Variation des Radius R_G	4
		4.5.4 Variation von ϵ_{r_a}	4
		4.5.5 Dreidimensionale Darstellung des Banddiagramms 8'	7
	4.6	Vergleich zwischen TE- und TM-Polarisation in einem Drei-	
		ecksgitter	3
	4.7	Meßtechnische Überprüfung der berechneten Ergebnisse für 2D-	
		periodische Strukturen	Э
	4.8	Anwendung kreisförmiger Aperturen als 2D-periodische Struk-	
		tur in planaren Antennenstrukturen	0
5	2D-	periodische Strukturen mit endlicher Dicke 108	8
		Berechnungsverfahren für den Fall $E_y=0$	1
		$5.1.1$ Herleitung der Beziehungen zwischen der E_x -Kompo-	
		nente und der übrigen Feldstärkevektorkomponenten 11:	2

		5.1.2	E_x -Kom	ponente für die geführten Moden und die Band-		
			struktur		113	
		5.1.3	Berechnu	ing der Ausbreitungskonstante β in z-Richtung	115	
			5.1.3.1	Mittlere relative Permittivität	115	
			5.1.3.2	Bestimmung von β	118	
	5.2	Berech	nungsver	fahren für den Fall $H_y=0$	120	
		5.2.1	H_x -Kom	ponente für die geführten Moden und die Band-		
			struktur		121	
	5.3	Impler	nentierun	g der Rechenverfahren	121	
	5.4	Ergeb	nisse der I	Berechnungsverfahren	122	
		5.4.1	Vergleich	n mit der Superzellen-Methode	122	
	5.5	Messte	echnische	Überprüfung der Rechenverfahren für 2D-		
		period	ische Stru	ıkturen mit endlicher Dicke	128	
	5.6	Anwer	ndung 2D-	periodischer Strukturen mit endlicher Dicke $$	132	
		5.6.1		rung von Streifenwellenleitern für integriert-		
			optische	$Komponenten \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	132	
		5.6.2	Modellie	rung von optischen Filtern am Beispiel eines		
			Notchfilt	ers	137	
			5.6.2.1	Ermittlung der Resonanzfrequenzen der Hy-		
				bridmoden eines Ringresonators	139	
			5.6.2.2	Resonanzfrequenzen und deren messtechni-		
				sche Überprüfung	144	
			5.6.2.3	Messtechnische Charakterisierung des		
				Notchfilters	147	
			5.6.2.4	Notchfilter in 2D-periodischer Struktur end-		
				licher Dicke	149	
		5.6.3		dische Strukturen endlicher Dicke zur Unter-		
				g des Parallel-Platten-Modus in planaren Struk-		
			turen an	n Beispiel der Koplanarleitung	153	
6	Zus	ammeı	nfassung		157	
\mathbf{A}	Anh	nang			174	
	A.1 Matrizen für primäres und reziprokes Gitter					
	A.2 Folgerung aus div $\vec{B} = 0$ und div $\vec{D} = 0$					

A.3	Herleitung der Gleichung (4.19) für den TE-Fall	6'			
	A.3.1 Orthogonalitätsbeziehung	6'			
	A.3.2 Herleitung der Gleichung (4.19)	6'			
A.4					
	tung der Gleichungen für den Fall $E_y = 0$	30			
A.5	Berechnung periodischer Strukturen endlicher Dicke: Herlei-				
	tung der Gleichungen für den Fall $H_y = 0$	3			
A.6	Elemente der Matrix M	35			
A.7					
	A.7.1 Grundsätzliches zu der Schlitzantenne in Streifenlei-				
	tungstechnik	6			
	A.7.1.1 Aufbau und Funktionsprinzip 18	6			
	A.7.1.2 Dimensionierung	37			
	A.7.2 Richtdiagramme	39			
	A.7.3 Dimensionierung des Wellenleiter-Tapers	39			
	A.7.4 Realisierte Einkopplungsanordnungen	14			
	A.7.5 Verluste im Übergangsbereich zum Wellenleiter 19	18			
Literat	urverzeichnis 20	0			