

Chatuna Kachiani (Autor)

Modellierung des Einflusses der Molekülrotation auf die Kinetik thermischer unimolekularer Reaktionen

ılarer
,

https://cuvillier.de/de/shop/publications/2915

Copyright:

Cuvillier Verlag, Inhaberin Annette Jentzsch-Cuvillier, Nonnenstieg 8, 37075 Göttingen, Germany

Telefon: +49 (0)551 54724-0, E-Mail: info@cuvillier.de, Website: https://cuvillier.de

Inhaltsverzeichnis

1 Zusammenfassung	1
2 Einleitung	3
3 Theoretische Grundlagen	6
3.1. Unimolekulare Reaktionen	6
3.2. Theoretische Behandlung der unimolekularen Reaktionen	7
3.3. Eigenwerte und Eigenvektoren	18
4 Formulierung der Modelle	22
4.1 Modell I	24
4.2 Modell II	24
4.3 Modell III	25
4.4 Modell IV	25
4.5 Neuer Ansatz zur Lösung der 2DMG	27
4.6 Implementierung	31
5 Spezifische Geschwindigkeitskonstanten	35
5.1 RRKM	37
5.2 SACM	39
5.3 Spezifische Geschwindigkeitskonstanten in	
den unterschiedlichen Modellen	45
6 Modellfunktionen für Energieübertragung	47
6.1 Experimentelle Untersuchung der Energieübertragung	50
6.2 Theoretische Methoden	51
6.3 Verteilungsfunktionen	53
6.4 Rotationsenergien	53
6.5 Normierung der Wahrscheinlichkeitsfunktion	55
6.6 Zustandsdichte	55
6.7 Stoßzahl	56
7 Anwendung	58
7.1 Thermischer Zerfall des Allylradikals	59
7.2 Thermischer Zerfall von Methan	69
7.2.1. Thermische Geschwindigkeitskonstanten	69
7.2.2. Inkubationszeiten beim Methanzerfall	74

7.2.3. Verschiedene Modellfunktionen für die Energieübertragung	76
7.3. Thermischer Zerfall von Toluol	81
7.3.1. Die spezifischen Geschwindigkeitskoeffizienten	84
7.3.2. Thermische Geschwindigkeitskonstanten	87
7.3.3. Verzweigungsverhältnis	89
7.3.4. Inkubationszeiten	91
7.4. Thermischer Zerfall von Formaldehyd	93
7.4.1. Die spezifischen Geschwindigkeitskoeffizienten	95
7.4.2. Thermische Geschwindigkeitskonstanten	97
7.4.3. Verzweigungsverhältnis	101
8 Anhang	105
9 Literaturverzeichnis	112