
Chapter 1

Introduction

The notion of clique-width of a graph was introduced in connection with graph

grammars by Courcelle, Engelfriet and Rozenberg in [27] and has been extensively

studied in recent years. Informally, the clique-width cwd(G) of a graph G is the

minimum number of labels needed to construct G, using the following operations:

create a new vertex with a label, taking disjoint union of two graphs, connecting

vertices with particular different labels, and renaming labels. An expression built

from the above operations using k labels is called a k-expression constructing G. A

related notion was introduced by Wanke [62].

Clique-width of graphs is interesting in an algorithmic sense. Many NP-hard graph

problems can be solved in linear time when restricted to graphs of clique-width at

most k, for some fixed k, assuming that a k-expression defining the input graph is

given. For example, all decision problems which are expressible in Monadic Sec-

ond Order Logic using quantifiers on vertices and vertex sets (MSO(τ1)-Logic) are

decidable in linear time on graphs of clique-width bounded by a constant([26]). Ex-

amples of such problems include k-Colorability for fixed k, 1 k-Partition into

Cliques for fixed k, k-Domatic Number for fixed k, and Planarity. (For these

and other graph problems considered in this thesis, see [40].) The MSOL(τ1) has

been extended to LinEMSOL(τ1,p) by counting mechanisms allowing the express-

ibility of optimization problems concerning maximum or minimum vertex sets ([28]).

Examples of NP-hard problems expressible in LinEMSOL(τ1,p) include Maximum

Weight Stable Set,2 Maximum Weight Clique, Vertex Cover, Domi-

1The 3-colorability of a graph G = (V, E) can be expressed in MSOL(τ1) as follows:
∃X, Y, Z ⊆ V : ∀v ∈ V (v ∈ X ∨ v ∈ Y ∨ v ∈ Z) ∧ ∀v ∈ V (v ∈ X → ¬(v ∈ Y ) ∧ ¬(v ∈ Z)) ∧
∀v ∈ V (v ∈ Y → ¬(v ∈ X) ∧ ¬(v ∈ Z)) ∧ ∀v ∈ V (v ∈ Z → ¬(v ∈ X) ∧ ¬(v ∈ Y )) ∧
∀u, v ∈ V ({u, v} ∈ E → ¬(u ∈ X ∧ v ∈ X) ∧ ¬(u ∈ Y ∧ v ∈ Y ) ∧ ¬(u ∈ Z ∧ v ∈ Z)).

2The Maximum Weight Stable Set problem can be expressed in LinEMSOL(τ1,p) as
follows: maxS⊆V

∑
v∈S f(v) : ∀u, w ∈ V ({u, w} ∈ E → ¬(u ∈ S ∧ w ∈ S)), where f is a given

evaluation function associating integer weight values to the vertices of G = (V, E).
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nating Set, and Steiner Tree. All such optimization problems are solvable in

linear time on graphs of clique-width bounded by a constant.

Another fact that makes the study of clique-width attractive is that the clique-width

is a complexity measure on graphs somewhat similar to treewidth. Roughly speak-

ing, the treewidth of a graph indicates how the structure of the graph is ‘close’ to a

tree (connected graphs of treewidth one are exactly trees). The concept of treewidth

was introduced by Robertson and Seymour [57], and is widely investigated. Simi-

larly to clique-width, one of the important results concerning treewidth is that any

graph problem expressible in MSOL(τ2) and LinEMSOL(τ2,p), the logics similar

to MSOL(τ1) and LinEMSOL(τ1,p) where quantifications over subsets of edges are

allowed, has a linear time algorithm when restricted to graphs of treewidth bounded

by a constant ([26, 2, 29]). A relation between treewidth and clique-width has been

shown by Courcelle and Olariu [30] (and improved by Corneil and Rotics [25]): If

a graph has bounded treewidth, it has bounded clique-width. Thus, the graphs

of bounded clique-width form a proper superclass of graphs of bounded treewidth

(note that the complete graphs have clique-width 2 but arbitrarily large treewidth).

With respect to the efficient solvability of problems expressible in Monadic Second

Order Logic, graphs of bounded clique-width therefore generalize graphs of bounded

treewidth in a ‘right way’: Clique-width is a more powerful concept than treewidth.

By the facts above, the following two problems are fundamental in the study of

clique-width:

• Which graphs have clique-width bounded by a constant? (The characterization

problem)

• Given a graph G and an integer k, decide whether or not G has clique-width

at most k. (The recognition problem)

Both problems are still open and seem to be very difficult. The only known par-

tial solution for the characterization problem is: Graphs of clique-width at most

2 are exactly the cographs (graphs without induced path P4 on four vertices). A

description of graphs of clique-width at most 3 still remains an open problem. The

only known partial results concerning the recognition problem in case k is fixed are:

Graphs of clique-width at most 2 can be recognized in linear time as recognizing

cographs can be done in linear time [24], and graphs of clique-width at most 3 can

be recognized in time O(n2m) [21] where n is the number of vertices and m is the

number of edges of the input graph. The complexity status of recognizing graphs of

clique-width at most 4 is still unknown. It is conjectured that if k is not fixed, the

recognition problem may be NP-complete (cf. [21, 25]). Note that the corresponding

recognition problem for treewidth is resolved: “Given G and integer k, does G has
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treewidth at most k?” is NP-complete [1]. If k is fixed, the problem is solvable in

linear time [6].

Espelage, Gurski and Wanke showed in their recently published paper [34] this

interesting result: Deciding clique-width for graphs of bounded treewidth is solvable

in linear time.

Contributions of the thesis. The aim of this thesis is to identify new graph

classes of bounded clique-width and new graph classes of unbounded clique-width.

Our contributions can be considered as a step towards a solution of both the char-

acterization problem and the recognition problem of clique-width. Moreover, as an

important consequence of our study, several known polynomial time algorithms for

optimization problems on certain graph classes can be improved to linear time by

our results. The thesis is organized as follows.

Chapter 2 provides basic notions and facts used throughout the thesis.

Chapter 3 presents new and very restricted graph classes of unbounded clique-width.

The main results are: K4-free co-chordal graphs, P8-free chordal bipartite graphs,

and (P6, diamond, K4)-free weakly chordal graphs have unbounded clique-width.

As mentioned above, graphs of clique-width at most 2 are exactly the cographs, also

called P4-free graphs. Cographs were independently discovered and studied under

different names in various fields (see e.g. [20, 53, 60, 45, 46, 59, 22]). They form a

very popular graph class due to the fact that a lot of NP-hard problems have linear

time algorithms when restricted on this graph class [23].

Various reseachers introduced cograph generalizations in many directions: Tinhofer

defined the tree-cographs where the recursion starts (instead of a vertex by cograph’s

definition) with any tree. Bacsó and Tuza [4] and Fouquet et al [38] gave different Pk-

free graph characterizations for k ≥ 4 (graphs without induced path on k vertices),

Babel and Olariu [3] generalized cographs by bounding the number of P4’s in the

considered graph in term of (q, t)-graphs: A graph is a (q, t)-graph if no set of at

most q vertices induces more than t P4’s. This definition again generalized several

cograph generalizations such as P4-sparse introduced by Hoang [49] (= (5, 1)-graphs)

and P4-laden by Giakoumakis [41] (a subclass of (6, 3)-graphs).

In Chapters 4–7 of this thesis we investigate the structure and clique-width of all

graph classes defined by forbidden one-vertex extensions of the P4 in a systematic

way: Let F denote the set of the 10 one-vertex extensions of the P4 in Figure 1.1.

For F ′ ⊆ F , there are 1024 classes of F ′-free graphs. We refer to these classes by the

enumeration of their forbidden subgraphs with respect to Figure 1.1. For example,

by definition, a graph G is P4-sparse if every set of five vertices in G contains at most

one P4 ([48]). Obviously, a graph is P4-sparse if and only if it is {2,3,4,5,6,8,9}-free.
In Chapter 7, we give a complete classification of these 1024 graph classes according
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Figure 1.1: All one-vertex extensions of a P4

to bounded and unbounded clique-width. The most difficult parts in doing this

classification are the cases of {1,9}-free graphs and of {1,10}-free graphs.

Clique-width of {1,9}-free graphs is discussed in Chapter 5. The discussion relies

on the fact that chordal co-gem-free graphs have bounded clique-width. The proof

uses a certain tree structure of such a graph, and is quite involved and interesting

in its own right.

Chapter 6 deals with clique-width of {1,10}-free graphs. Among the 1024 classes, the

class of {1,10}-free graphs is perhaps the most natural generalization of cographs; it

is the biggest class among all classes by excluding two one-vertex extensions of the P4

which is self-complementary and has bounded clique-width. The discussion is very

technical and uses intensively the structure of cographs induced by the neighborhood

and non-neighborhood of a vertex in a {1,10}-free graph.

As an example of the use of clique-width in solving certain graph problems on graphs

of bounded clique-width, we discuss the {3,4,10}-free graphs in Chapter 4. We show

that such a graph has clique-width at most 9 and a 9-expression can be obtained

in linear time. This improves known optimization results on {3,4,10}-free graphs in

the literature.



Chapter 2

Preliminaries

2.1 Some basic graph notions

Notions and definitions not given here can be found in any standard textbook on

graph theory or graph algorithms, e.g. [43].

Let G = (V, E) be a finite undirected graph, and let |V | = n and |E| = m. The

complement graph G = (V, E) of G is defined by E = {uv : u, v ∈ V, u 	= v and

uv /∈ E}. Let NH(v) := {u : u ∈ H, u 	= v, uv ∈ E} denote the (open) neighborhood

of v and NH [v] := N(v)∪{v} the closed neighborhood of v in H for a subset H ⊆ V .

When H = V , we omit the index. Sometimes, we write x ∼ y for xy ∈ E and x 	∼ y

for xy 	∈ E.

G is called connected if every pair of vertices in G is connected by a path. Otherwise,

G is disconnected . A component of G is a maximal connected subgraph of G. A

nontrivial component of a graph contains at least two vertices.

A graph G′ = (V ′, E ′) is a subgraph of G if V ′ ⊆ V and E ′ ⊆ E. A subgraph

G′ = (V ′, E ′) is an induced subgraph of G if E ′ = {uv : uv ∈ E and u, v ∈ V ′}. We

say that G′ is induced by V ′ and write G[V ′] for G′. Throughout this thesis, all

subgraph containments are understood as induced subgraph containments. When

there is no doubt, we sometimes do not differentiate a vertex set U ⊆ V from the

subgraph which U induces.

Let F denote a set of graphs. A graph G is F-free if none of its induced subgraphs

is isomorphic to a graph in F .

A vertex set U ⊆ V is a clique in G if the vertices in U are pairwise adjacent. A

clique of k vertices will be denoted by Kk.

A vertex set U ⊆ V is stable (or independent) in G if U is a clique in G. A vertex

set U ⊆ V dominates G if every vertex outside U has a neighbor in U . A graph
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G = (V, E) is bipartite if its vertex set V can be partitioned into two disjoint stable

sets A, B; if every vertex in part A is adjacent to every vertex in part B, G is called

complete bipartite.

For k ≥ 1, we write Pk= v1v2 . . . vn for a chordless path with k vertices and k − 1

edges, and for k ≥ 3, we write Ck = v1v2 . . . vnv1 for a chordless cycle with k vertices

and k edges. A hole is an induced subgraph isomorphic to a Ck for k ≥ 5. An odd

hole is a hole having odd number of edges. Connected graphs without any cycle Ck,

k ≥ 3, are called trees. A graph is chordal if it is Ck-free for k ≥ 4.

For a graph class G we write co-G for the class of complement graphs of graphs in G.

Thus, the class of co-chordal graphs consists of the complements of chordal graphs.

For an integer n ≥ 1, we write nG for the graph consists of n disjoint copies of

the graph G. We denote by Kn,m the complete bipartite graph with a bipartition

into a stable set of n vertices and a stable set of m vertices. The K1,3 is also called

claw . See Figure 1.1 for the definitions of a gem, chair, P, bull, house and their

complements.

For disjoint vertex sets X and Y , the join (co-join) operation between X and Y

creates edges (non-edges) between all vertex pairs x ∈ X and y ∈ Y . Thus, X has a

join to Y if for all x ∈ X, y ∈ Y , xy ∈ E, and X has a co-join to Y if for all x ∈ X,

y ∈ Y , xy /∈ E. We write x has a join (a co-join) to Y if X = {x} and X has a join

(a co-join) to Y .

For a vertex set H and a vertex v ∈ V \ H we say v distinguishes H, if v has a

neighbor and a nonneighbor in H. If a vertex not in H is adjacent to exactly k

vertices in H then it is called k-vertex with respect to H. We also say H has no

k-vertex if there is no k-vertex with respect to H. A vertex set M ⊆ V is a module

in G if for all vertices x ∈ V \M , x has either a join or a co-join to M . Thus, M is

a module if and only if no vertex outside M distinguishes M . The trivial modules

of G are ∅, V and the one-elementary vertex sets. A homogeneous set in G is a

nontrivial module in G. A homogeneous set M is maximal if no other homogeneous

set properly contains M . A graph containing no homogeneous set is called prime.

Note that a graph is prime if and only if its complement is prime, and the smallest

prime graph with more than two vertices is the P4.

2.2 The clique-width of graphs

In this section we provide the main definition of the thesis, give examples illustrating

the definition, and collect basic facts about clique-width.

Definition. The clique-width of a graph G, denoted by cwd(G), is defined as the
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minimum number of labels needed to construct G, using the following four opera-

tions:

(i) create a single vertex v with an integer label � (denoted by �(v));

(ii) disjoint union of two graphs (i.e. co-join) (denoted by ⊕);

(iii) join between all vertices with label i and all vertices with label j for i 	= j

(denoted by ηi,j);

(iv) relabeling all vertices with label i by label j (denoted by ρi→j).

Note that these four operations create labeled graphs. Unlabeled graphs are consid-

ered as graphs all of whose vertices have the same label.

It should be remarked that the notion of NLC-width introduced by Wanke [62] is

very similar to clique-width: The NLC-width of a graph G, is the minimum number

of labels needed to construct G using two graph operations called union (×S) and

relabeling (◦R).

Definition. A k-expression of a graph G describes a sequence of operations (i)-(iv)

generating G and using at most k pairwise different labels.

For example, the following 3-expression generates the C5 = v1v2v3v4v5v1 with labels

1, 2, 3:

η3,1(ρ3→2(η2,3(η1,2(1(v1) ⊕ 2(v2)) ⊕ η1,3(3(v3) ⊕ 1(v4)))) ⊕ 3(v5)).

As another example, the complete graph G with vertices v1, . . . , vn can be inductively

expressed with two labels 1 and 2, such that finally all vertices get the same label

1, as follows: If n = 1, τ := 1(v1) defines G. Let n > 1, and let τ ′ be a 2-expression

defining G − vn such that finally all vertices of G − vn get the same label 1. Then

τ := ρ2→1(η1,2(τ
′⊕2(vn))) defines G. The expression τ can also be written in a more

compact form as follows:

τ := 1(v1)

for i := 2 to n do τ := ρ2→1(η1,2(τ ⊕ 2(vi))).

Other examples are discussed in the next section.

The following basic facts on clique-width will be used in our discussions.

Proposition 2.1 ([30]). If H is an induced subgraph of a graph G, cwd(H) ≤
cwd(G).

Proposition 2.2 ([30]). For every graph G, cwd(G) ≤ 2 · cwd(G).
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Proposition 2.3 ([28]). For every graph G, the clique-width cwd(G) of a graph G

is the maximum of the clique-width of its prime induced subgraphs.

Definition. A graph class G has bounded clique-width if there exists a constant k

such that, for every member G ∈ G, cwd(G) ≤ k. If there is no such constant, G
has unbounded clique-width.

It turns out that a graph class has bounded clique-width if and only if it has bounded

NLC-width. More precisely, Johansson showed in [52] that, for every graph G,

NLC-width(G) ≤ cwd(G) and cwd(G) ≤ 2 · NLC-width(G).

Let G be a graph class. The following facts will be often used without further

reference:

First, by the definition of clique-width, we have: If G has bounded clique-width,

every subclass of G also has bounded clique-width. If G has unbounded clique-

width, every superclass of G also has unbounded clique-width.

Second, by Proposition 2.2, G has (un)bounded clique-width if and only if co-G has

(un)bounded clique-width.

Third, by Proposition 2.3, when considering clique-width of graphs in a class G, we

may restrict ourselves on the prime members in G, theoretically. Algorithmically,

a k-expression defining G ∈ G can be constructed from the k-expressions defining

the prime members in G by using the modular decomposition tree of G. This fact is

described in [28, Proposition 32]. Since the modular decomposition tree of a graph

G = (V, E) can be constructed in linear time ([31, 56, 32]), a k-expression defining

G ∈ G can be constructed in linear time O(|V |+|E|) given the k-expressions defining

the prime members in G.

Summarizing, the following algorithmic meaning of clique-width is known.

Theorem 2.1 ([28]). Let C be a class of graphs of clique-width at most k such

that there is an O(f(|E|, |V |)) algorithm, which for each graph G in C, constructs a

k-expression defining it. Then for every LinEMSOL(τ1,p) problem on C, there is an

algorithm solving this problem in time O(f(|E|, |V |)).

2.3 Basic graph classes of bounded clique-width

This section collects graph classes of bounded clique-width which will be used in this

thesis. Graph classes of unbounded clique-width will be considered in Chapter 3.

Cographs. Cographs (or complement reducible graphs) are recursively defined as

follows ([22]):
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• A single vertex graph is a cograph;

• If G1 and G2 are disjoint cographs then so is their union G1 ∪ G2;

• If G is a cograph, then so is its complement G.

There are several known characterizations of cographs (see e.g. [15]), of which the

following two are of interest for our discussions:

(i) G is a cograph if and only if for every induced subgraph H of G, H or H is

disconnected;

(ii) G is a cograph if and only if G is P4-free.

It is well-known that cographs are exactly those graphs of clique-width at most 2.

However, because we consider cographs extensively, we will show this fact here for

the sake of completeness. Moreover, we point out that a 2-expression for a given

cograph can be obtained in linear time.

Let G be a cograph. If G consists of exactly one vertex, say v, then τ := 1(v)

defines G. Let G have more than one vertex. By (i), G or G is disconnected. If

G is disconnected, then G is a co-join of two smaller cographs G1 and G2. If G is

disconnected, then G is a join of two smaller cographs G1 and G2. In each case let

τi be a 2-expression with labels 1 and 2 defining Gi, i = 1, 2. Then in the first case

τ := τ1 ⊕ τ2 clearly defines G, and in the second case τ := η1,2(ρ2→1(τ1) ⊕ ρ1→2(τ2))

clearly defines G. Moreover, since τi can be inductively constructed in time O(ni)

(ni is the number of vertices of Gi), τ is constructible in time O(n1)+O(n2) = O(n)

where n is the number of vertices of G.

Note that it can be shown by easy case analysis that an induced P4 cannot be

generated with 2 labels. Thus, by (ii) cographs are exactly those graphs with clique-

width at most 2.

Paths and cycles. The clique-width of Pn is at most 3, and a 3-expression τ

defining the Pn = v1v2 . . . vn, n ≥ 2, with labels 1, 2, 3 can be obtained in time O(n)

as follows:

τ := η1,2(1(v1) ⊕ 2(v2))

for i := 3 to n do τ := ρ3→2(ρ2→1(η3,2(τ ⊕ 3(vi)))).

Therefore, since graphs of clique-width at most 2 are exactly the cographs,

cwd(Pn) = 3 for n ≥ 4. The clique-width of Cn is at most 4 and a 4-expression

defining it can be constructed in time O(n); see [55].

Complements of paths and cycles. The clique-width of Pn, the complement

graph of the path Pn = v1v2 . . . vn, n ≥ 2, is at most 3, and a 3-expression τ defining


