
Chapter 1

Introduction

1.1 A Moving-Boundary Problem: the Carbon-
ation of Concrete

The thesis deals with the modeling, analysis and simulation of the progress
of the carbonation reaction in concrete-based materials, see section 2.1 for a de-
tailed statement of the problem. We describe the evolution of the carbonation
front separating the uncarbonated region from the carbonated part of a partially
saturated concrete sample via two conceptually different moving-boundary prob-
lems (mbp), which we refer to as moving-interface (carbonation) models. This
new modeling approach yields coupled semi-linear systems of reaction-diffusion
equations acting in two-phase domains. They either present a moving sharp in-
terface (the model PΓ) or two moving internal reaction layers (the model P2ε).
Non-local kinetic laws are used to model the advancement of the internal in-
terface or layer that separates the different domains. We derive such laws via
first principles for simple geometries using the physicochemistry of the problem.
Since the velocity of the reaction interface or layer is described by alike rela-
tionships, the accuracy of the prediction is based on them, but also on a proper
definition of the reaction front position. The final scope of the models is to
serve as forecasting tools for estimating the initiation of corrosion in concrete.
Further comments on these formulations can be found in chapter 2 as well as in
[BKM03a, BKM03b, MB04a, MB04b], e.g.

The solution of our moving-interface carbonation models consists of deter-
mining the concentration fields of the active species (reactants and products)
entering the carbonation reaction

CO2(g → aq) + Ca(OH)2(s → aq) → H2O + CaCO3(aq → s)

and the position of the moving front1. While we confine our study to the case
of one-dimensional geometries, the theory presented here is comprehensive and
includes global existence, uniqueness, continuity with respect to data and model
parameters and other qualitative properties of the solution, and also an algo-
rithm to compute the solution numerically. The analytic results ensure the

1In this work, the word front has a twofold significance. It either means sharp-interface or
thin layer.
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well-posedness of our models and are useful for the model verification. We per-
form numerical simulations in order to illustrate the qualitative properties of the
solution and recover measured penetration depths from a couple of accelerated
and natural carbonation tests, which are concisely described in appendix C.

A large numbers of studies on the one-dimensional Stefan problem were de-
voted to classical and weak solutions in the case of scalar non-linear parabolic
equations with various equilibrium or non-equilibrium conditions at the moving
interface. See, for instance, the monographs by Rubinstein [Rub71], Friedman
[Fri88], Meirmanov [Mei92], Cannon [Can84], Hill [Hil87], Vuik [Vui93] and the
references therein. Systems of moving-boundary problems have been dealt with
by several authors, for instance, in [FH96, FRZ95, BR97a, BR97b, CCF85].
The methods in [FH96, FRZ95, CCF85, PK96] yield classical solutions. Since
we aim at extending the analysis to tackle quasilinear reaction-diffusion systems
to which we might later also add the partial differential equations (pdes) de-
scribing the mechanics of the concrete, alike methods can not be exploited in our
context. We are primarily interested here in proving the well-posedness of weak
solutions to our models. Specifically, for systems of pdes maximum and mini-
mum principles are generally not available. Therefore, other methods have to be
applied to gain the positivity and maximum estimates of the solution. Concep-
tually close to our setting are [Paw90, CHS90, BR97a, BR97b, BDJR98, CR05],
e.g. In these papers, only one-phase systems of pdes are dealt with, and hence,
the supplementary interface conditions are rather non-sophisticated kinetic laws.
An example of a homogeneous two-phase moving-boundary problem with a ki-
netic condition at the moving interface is treated by Visintin in [Vis87], e.g. At
the practical level, scenarios from Fasano et al. [FMP86] (penetration of sol-
vents into polymers), Ortoleva [Ort94] (fast reaction – slow diffusion scenarios in
geo-chemistry), Froment and Bischoff [FB90] (noncatalytic gas-solid reactions
with large Thiele moduli) and Caboussat and Rappaz [CR05] (free-surface flow
model of Burgers-Stefan type), e.g., are conceptually related to this work. On
the other hand, at the technical level, at least in what the proof of the local
existence and uniqueness of solutions is concerned, the contributions by Böhm
and Rosen [BR97a, BR97b] prove to be important for choosing the strategy of
construction of the fixed-point operators.

Of a particular interest for us are the papers by Souplet et al. [SGT01]
and Fila and Souplet [FS01]. They succeeded to complete the study of the
well-posedness and established the global behavior of classical solutions for a
one-phase Stefan-like problem with super-linear production term (i.e. the right-
hand side of the pde has a power-law structure with super-unitary exponent)
and Dirichlet-Neumann boundary conditions. They were able to classify the
behavior of the global solutions as fast and slow solutions (in a certain sense)
taking explicitly into account the size of the exponent in the production term.
A similar working program for investigating the effects of the production terms
by reaction on the transport part may also be planned for our moving interface
models, see section 3.6. However, some fundamental qualitative features have to
be firstly ensured in order to gain a basic analytic understanding of the proposed
models. This is the scope of chapter 3.

To perform the simulations in chapter 4, we use a front-fixing approach
(cf. Crank [Cra84]) and a vertical method of lines (MOL) scheme, in which the
spatial discretization has been constructed on a fixed grid by means of piecewise
linear finite elements. Some preliminary numerical investigations of models PΓ
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and P2ε have been reported in [BKM03a, BKM03b, MB04b], e.g. For related
numerical studies, the reader is especially referred to [BDJR98, SGS05], but
also to [BK99, SS97, Nar06], e.g.

In the present work, we take the following steps:
(1) Develop moving-boundary models for concrete carbonation (e.g. PΓ,

P2ε);
(2) Prove those basic qualitative behaviors which can ensure the well-posedness

(in a certain sense) of the models proposed in (1);
(3) Acquire an appropriate picture about how close the proposed models

[from (1) satisfying the properties declared in (2)] can recover realistic scenarios
and identify the most influential model parameters.

We intend to point out that the models presented in this thesis are a reliable
working alternative2. At this stage, the following questions are important:

(Q1) Under which restrictions on the size of the material parameters, initial and
boundary data is the well-posedness of the moving interface carbonation
models ensured? Are these restrictions physically acceptable?

(Q2) Do the active concentrations remain positive and bounded from above
along the existence time interval?

(Q3) Do the proposed models recover typical patterns usually shown by con-
crete carbonation in the frame of accelerated tests and tests under normal
outdoor exposure conditions?

1.2 Outline of the Thesis

Each chapter deals with distinct matters. We made them self-contained
so that they can be read separately. Appendices A and B complement the
exposition. We briefly describe the contents of the chapters:

Chapter 2 introduces the model problem that we are dealing with. The bulk
of the chapter presents the modeling of various aspects concerning the concrete
carbonation: precipitation and dissolution reactions, reaction-induced changes
in porosity, transport of moisture, e.g. We develop model equations that may
constitute a prototype of some reaction-diffusion scenarios that can take place
in many reactive porous materials. The main modeling results are formulated
in sections 2.3 and 2.4, namely the moving-interface models PΓ and P2ε.

Chapter 3 is an exposition of the well-posedness of global weak solutions to
the moving-boundary problems PΓ and P2ε introduced in the previous chapter.
This constitutes the bulk of the thesis.

Chapter 4 presents an elementary treatment with finite elements of one-
dimensional one-phase and two-phase systems of weakly coupled parabolic equa-
tions having several moving internal reaction layers. Auxiliary results are pre-
sented in Appendix A. Numerical simulations illustrate the typical behavior of
concentrations and interface position for our models when various model pa-
rameters are drastically changed.

A review of results and a summary of conclusions are drawn in chapter 5.
The chapters begin with an overview of the subject matter, together with

an orientation as to how the topics presented are related to those in previous
2See section 2.1.2 for a review of earlier modeling approaches of concrete carbonation.
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and subsequent chapters. Except for chapters 1 and 5, they end up with a
section entitled Notes and Comments. The purpose of such a section is to
briefly comment on topics that selectively complement the chapter. This is
not meant to be exhaustive but rather offer a glimpse on some closely related
problems. The choice of topics is based on our personal taste. Within this
frame, we collect a few ideas, open problems and methods of analysis in simple
(often pathological) cases, rather than on pursuing each problem to its limits.
Some additional references to related matters are also added. Many footnotes
accompany the text. Their goal is to additionally comment on some issues of
local importance. Nevertheless, the footnotes and the Notes and Comments
sections are not essential for the logical understanding of the text. References
to the literature are given at the end. The numbering of theorems, lemmata,
formulae, etc. is made for each chapter separately. When a reference is made
to the current chapter or to a different one, this is explicitly stated.

Key Words and Phrases: Moving-boundary problem, reaction-diffusion
equations, weakly non-linear parabolic systems, a priori estimates, well-posedness,
porous media, corrosion, phase transformations in solids, concrete carbonation

MSC (2000): 35 R 35, 35 K 57, 35 K 45, 35 K 60, 35 B 50, 35 D 05, 35 B
30, 74 F 25, 74 N 99



Chapter 2

Moving-Interface
Carbonation Models

Orientation: The goal of this chapter consists of formulating the equations
that govern the concrete carbonation process at the macroscopic scale. In sec-
tion 2.1, we present some of the specifics, while the basic geometry of the setting
we are dealing with is described in section 2.2.1. Based upon several model-
ing assumptions, which we mention ahead step-by-step, we present the general
reaction-diffusion model (see the subsections of 2.2). The main results of this
chapter are the moving-interface models PΓ and P2ε as well as the intermediate
formulation PΓε, see sections 2.3 and 2.4. The models represent a new approach
to the study of the concrete carbonation problem and partly rely on the prelim-
inary reports [BKM03a, BKM03b, MB04b, GM03] and [MB04a]. Section 2.5
contains further directions and open problems concerning the modeling part.

2.1 Problem Statement

2.1.1 Comments on the Physics of the Situation

In all carbonation scenarios, gaseous carbon dioxide is assumed to be sup-
plied from an inexhaustible exterior source to the concrete sample. It is well-
known that carbon dioxide entering the non-saturated concrete sample through
the air parts of the pores dissolves into the pore water and forms carbonic acid.
Due to the low stability of the latter product and availability of calcium hydrox-
ide in solution, the calcium carbonate is formed as a result of the carbonation
reaction. This product of reaction is low soluble in the pore water. Its precip-
itation is assumed to occur quickly once a critical degree of super-saturation
is attained. Water represents the second product of the reaction. Its precise
role in the overall process is not quite clear. At one hand it provides a medium
favorizing reaction, on the other hand, the water either drying out or wetting
the sample fills the void space of the pores with the clear tendency to saturate
the material. It has been shown via simulations (see [MPMB05, MMP+05], e.g)
and by experiment (see [IMS04], e.g.) that the water produced by carbonation
can locally form a barrier for CO2(g). This may act as an obstacle with respect
to the ingress of CO2(g). Such a barrier-like pattern can strongly influence the
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extrapolation of results from the accelerated test to the natural exposure case.
In the civil engineering community, there is neither a general strategy, nor a
common agreement on how to deal with such nonlinear phenomena [KHG+95].
The complex reaction pathway, the complexity of the transport mechanisms for
chemical species in non-saturated porous materials, together with the role of
water in concrete, have to be taken into account in order to obtain a quan-
titative description and a reliable forecast of the time and space evolution of
concentrations. It is therefore necessary to start with a simplified approach of
the problem. Our modeling strategy relies on the moving-interface methodology
and it is explained in sections 2.3 and 2.4.

2.1.2 Earlier Studies

Several experimental studies addressed the problem of carbonation of concrete-
based materials. Up-to-date information about what is known in the field of
concrete durability with respect to the carbonation process is collected in the
survey paper by Chaussadent [Cha99]. For detailed literature studies concern-
ing the carbonation process (and some closely related matters), the reader is
referred to the dissertations by Kropp [Kro83], Bier [Bie88] and Bunte [Bun94],
e.g. Recent completions are added by the contributions of Steffens [Ste00], Si-
somphon [Sis04], Oisgor-Burkan [BI01] and Maekawa and Ishida [IM01]. Our
standard references of published data regarding long-time carbonation tests un-
der various natural exposure conditions are the report by Wierig [Wie84] and
the thesis by Bunte [Bun94]. In order to be able to see a certain progress of the
process in a short time interval (at the laboratory time-scale, e.g.), several types
of accelerated tests have been proposed [Cha99]. They all aim to determine the
penetration of the carbonation front within a few days or weeks. A concise
description of a typical accelerated test setup is given in appendix C.

Particularly important for our investigation are the papers by Houst and
Wittmann [HW02], Houst, Roelfstra and Wittmann [HPR83], Saetta, Vitaliani
and Schrefler [SSV93, SSV95, SV04], Steffens, Dinkler and Ahrens [SDA02].
They are all concerned with modeling and simulation issues. The authors tune
their models in order to fit measured penetration curves in case of various bound-
ary conditions and types of cements. Another step towards the understanding
of the overall process is done by the dimensional and asymptotic analyses by
Papadakis, Vayenas, and Fardis in [PVF89] and in a series of subsequent pa-
pers. The thesis by Tuutti [Tuu82] and the paper by Brieger and Wittmann
[BW86] are conceptually close to our moving-interface approach. Tuutti is the
first one who used the moving-boundary methodology to model the carbona-
tion of concrete. He basically frames a simplified carbonation scenario1 into the
classical setting of the two-phase Stefan problem. Using the Neumann solution
to this problem (cf. [Cra75], section 13.2.2) he is able to calculate the reac-
tants concentration as well as the position of the sharp interface that separates
the two reactants. As a straightforward consequence, he obtains analytically
that the interface between completely carbonated parts and non-carbonated
parts behaves like

√
t for sufficiently large time t. This was a novelty at that

1Two model assumptions have to be recalled here: (1) CO2 and Ca(OH)2 are segregated
species whose concentrations are vanishing at the separating interface; and (2) There are no
volume or surface productions by carbonation, the carbonation reaction being tacitly supposed
to happen instantaneously at the separating sharp-interface.
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time, since all prior
√

t-laws for predicting the concrete carbonation penetration
were based exclusively on fitting arguments. Brieger and Wittmann incorporate
the carbonation problem into the framework of the two-phase Stefan problem,
too. The main difference compared to Tuutti’s approach consists of the pres-
ence of productions by reaction across the separating interface. They prescribe
Rankine-Hugoniot jump conditions along the reaction interface for all active
concentrations and point out that all involved concentrations and the respec-
tive Fickian fluxes may have jumps across the reaction interface. Unfortunately,
they omit to impose a second condition across the moving interface, and hence,
their moving-boundary models become mathematically ill-posed.

There are few types of PDE models describing the concrete carbonation2:

(I) The active concentrations (i.e. reactants and products) are present every-
where in a volume control, say Ω, at all times.

(II) The reactants are completely separated by a thin front, say Γ(t), in which
they may coexist. One reactant lives in Ω1(t), while the second one in
Ω2(t). The regions Ω1(t) and Ω2(t) are disjoint parts of Ω, but have a
common boundary.

(III) The reactants are separated by a more or less thin front in which they
may coexist. Additionally, a secondary reaction may happen as soon as
dissolution of the alkaline species acts in the product zone Ω1(t).

We refer to models of type (I) as isolines or mixed models and the models of
type (II) as moving interface3 or segregated models. Models of type (III), which
we call secondary carbonation models, are a special class of models of the type
(II).

Almost all existing carbonation models are of type (I) and are mainly based
on linear or semi-linear systems of parabolic pde’s with volume production
terms. An exception from the rule are some of the models for the moisture
behavior in unsaturated concrete fabrics4. Although isolines models are more
realistic, moving-interface models may represent a good approximation. This
is especially true for accelerated carbonation tests but also for some of natural
carbonation scenarios [PVF89, Bun94] for various types of cements. The condi-
tion for occurrence of sharp fronts is that the process is in its fast reaction/slow
diffusion regime, see appendix A.

The carbonation process is framed within the most important durability
issues of concrete structures exposed in aggressive environments [JKS96, Mar01],
e.g. In combination with a few other durability issues, it is sometimes called the
cancer of the concrete. We approach the carbonation problem via models of type
(II) with the hope to contribute to a better understanding and better prediction
of the overall process. This should offer complementary information to that
obtained by employing models of type (I), [MPMB05, PMMB05, SMB05]. At
this stage, it is not at all clear which type of model covers the reality the best.

2This is not the unique way to classify the carbonation models. A different classification
is given in [MMP+05], e.g.

3The word interface refers to the location where the carbonation reaction takes place. This
is most likely a reaction zone and, in ideal cases only, it might be a surface. Generically, we
call all our moving boundary formulations moving-interface carbonation models.

4Some of the moisture potentials can lead to second-order hyperbolic equations.
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It seems that all of (I)-(III) equally requires attention. Within this frame, we
focus on models belonging to the classes (II) and (III).

2.2 The Reaction-Diffusion Problem. Modeling
Assumptions

We prepare the formulation of the equations governing the carbonation
process at the macroscopic scale. The step between explaining the physical
and chemical issues, which are relevant at a microscopic scale, and writing
down the equations at the macroscopic level, is usually done via an averag-
ing argument (see, for instance, [Bea72, Kna91, CD99, Hor97], etc., but also
[Pet06, Mei06, SMB99] for applications in case of cementitious materials). Our
explanations regarding phenomena taking place at the pore level only intend to
give some motivation to the various production terms and rival effects at the
macro-scale. Proving all statements by an homogenization approach represents
a tedious task by itself and is beyond the scope of this work. Questions of pri-
mary interest are: How can one define the position of the reaction front? How
do the concentrations and the reaction front (in one of its forms sharp-interface,
thin layer or thick zone) evolve in time? Which mechanism drives the front?

2.2.1 Basic Geometry. Choice of Porosities

We consider a part of a concrete member that is exposed to ingress of gaseous
CO2 and humidity from the environment. Fig. 2.2 shows a typical control
volume (box A) in such a structure. We denote by Ω the whole box A (or
part of it) for which we model the carbonation process under natural exposure
conditions. If we refer to an accelerated test, then the geometry we have in
mind is depicted in Fig. 2.3 and Ω is now part of box B.

Figure 2.1: Concrete as a multiphase material, [Mei06].

The typical situation in the process of concrete carbonation can be summa-
rized as follows: Generally, the concrete matrix is made of a mixture of water,
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Figure 2.2: Typical corner of a concrete structure. The box A is the region to
which our model refers when dealing with natural exposure conditions.

Figure 2.3: Cross section of a cylindrical concrete sample. The grey area indi-
cates a zone Ωε(t) of steep change in pH. Ω2(t) is the uncarbonated zone. Ω1(t)
is the partially carbonated zone, Γext - the exterior boundary. The box B is the
region to which our model refers when discussing the accelerated carbonation
test.

cement5 and aggregate. Such mixtures, once they are hardened, have a definite
porous structure. The grains (gravel, sand, etc.) or particles have different sizes,
held together by compression and cementing material and form a multiphase
composite with complex chemistry, see Fig. 2.1. To describe reaction-diffusion
processes in such multiphase materials, we make use of a few specific notations
and definitions. Let Ω(t) denote a representative control volume within the
concrete sample at the time t ∈ S, where S represents a given time interval.
The dependence of Ω on the time t shows that possible changes in the shape
and volume could be allowed. However, within the frame of this thesis, the size
and shape of this region is assumed to be constant. Therefore, we account for
Ω = Ω(t) for all t ∈ S. The region Ω consists of two distinct parts Ωp and Ωs.
The part Ωp represents the inner pores space, and Ωs is the part occupied by
the consolidated aggregate and mortar.

5We have in mind the application of the moving-interface models on concrete-based ma-
terials containing ordinary Portland cement. For other type of cements, the whole setting
has to be extended to account for more carbonation reactions and for additional competitive
chemical effects, see [PMMB05], e.g.


