
Chapter 1

Introduction

Online Optimization

In classical optimization, all input data of a problem instance is assumed to be avail-
able at once. Many real-life problems, however, require decisions before information
about the data is complete. This insight has prompted the research in online opti-
mization. In an online optimization problem, decisions have to be made while parts
of the data are still missing.

Many real-life problems are naturally online. Picture, for instance, your next
weekend trip to a European city. You want to see the most important sights, includ-
ing monuments and museums, and walk around to immerse into the city’s special
atmosphere. When you arrive, one of the first decisions you will need to make is
whether to buy a 4-day ticket, valid on all public transport, at a price of 18 Euro, or
whether to buy tickets whenever you need them. Single ride tickets have a validity of
90 minutes, and their prices range from 1.50 Euro to 2.30 Euro, depending on the
length of your ride and the means of transportation you choose. So, what should you
do? A 4-day ticket would be convenient, of course: you don’t have to bother about
buying tickets any more. But is it worth it? On the one hand, if the weather is nice,
then you’ll probably walk most of the time, and you could save some money now and
afford another (probably too expensive) coffee on one of the main boulevards later.
On the other hand, if it rains a lot, then it would be nice to take a bus ride through
the city or to catch the subway to the next museum. A lot of information such as
the actual weather conditions, special events you might want to attend, etc., are not
known to you in advance. This forces you to make decisions under uncertainty.

Incomplete information is a feature common to many real-life problems. Online
problems arising in practice include distributed data management, foreign exchange
and stock trade, the control of elevators, and the routing of calls in a telecommuni-
cation network.

In online optimization, the input data is usually modeled as a sequence of requests
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that is revealed piecewise. An online algorithm may base its decisions at any time only
on the requests known to it so far. Request sequences can be classified into two types:
the sequence model and the time stamp model .

In the sequence model, an online algorithm must process the requests one by
one. It gets to know the next request only after it has made an irrevocable decision
for the previous one. A well-known example is paging in a virtual memory system: a
central processing unit (CPU) must decide which page to evict from its fast memory
upon receiving a request for some page in its slow memory. The next request is only
disclosed when the previous one has been processed, i.e., when the CPU has ensured
that the requested page is in its fast memory. Time does not play any role in this
model. Each decision of an online algorithm results in some gain or loss, and the
objective function usually depends on the total gain or loss.

In contrast, time is decisive in the time stamp model. Here, each request has
a non-negative release time, and an online algorithm gets to know further requests
as time is progressing. The objective function usually depends on time. An online
optimization problem in which new requests arrive over time is the Online Traveling
Repairman Problem, an online variant of the famous Traveling Salesman Problem.
In the Online Traveling Repairman Problem, a repairman has a set of jobs to do.
Each job requires him to drive to a customer. While he is on his way, the repairman
receives new requests and must decide how to rearrange his schedule such as to finish
each job as early as possible.

Evaluation of Online Algorithms

For the comparison of online algorithms, it is necessary to have meaningful measures
for assessing their quality. Several approaches have been taken to evaluate online
algorithms.

In the traditional distributional or stochastic approach, a distribution over the
problem instances is assumed, and the expected objective value of the online algo-
rithm under consideration is computed. The major weakness of this average-case
approach is that the assumed distribution is often either unrealistic, or too complex,
making the computation of the expected value intractable. Another option is to
compare the worst-case objective values of two algorithms. Alas, this approach is also
problematic: what if all algorithms are equally bad in the worst-case? In the pag-
ing problem mentioned above, for instance, all algorithms show the same worst-case
behavior: they incur a page fault in each step.

Competitive analysis tries to overcome this weakness by introducing a (hypo-
thetical) benchmark algorithm, the optimal offline algorithm, that knows the given
sequence in advance and can process it in an optimal way. The worst-case perfor-
mance of an online algorithm is measured relative to the optimal offline algorithm:
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Given a minimization problem, an online algorithm ALG is said to be �-competitive,
if, for any problem instance �, the objective function value of ALG on � is at most
� times the objective value of the optimal offline algorithm on �. Since the ratio of
the online and the offline objective value must be bounded by the constant � for all
instances, competitive analysis is a worst-case approach. It is intended to answer the
question what is lost in the worst case by the lack of complete information.

Competitive analysis has become the standard tool in online optimization. Ne-
vertheless, it suffers from several conceptual deficiencies. For instance, it completely
disregards complexity issues; an online algorithm is not required to be efficient or
to make real-time decisions. Fast computation becomes important, however, when
online algorithms are to be used in practice. Very frequently, decisions have to be
made within a given time bound, often within seconds. Therefore, online algorithms
intended for real world problems must be efficient, or at least workable.

An important instrument for the assessment of practical algorithms is simulation.
Simulation experiments are indispensable to emulate and evaluate the behavior of on-
line algorithms designed for practical use. In particular when worst-case performance
bounds are not available or based on unrealistic scenarios, carefully chosen simula-
tion runs provide valuable experimental performance guarantees. It is important to
use real data for simulation whenever possible.

Other weaknesses of competitive analysis, as well as efforts to overcome them,
will be addressed in Section 2.3.

Online Dial-a-Ride Problems

In the Dial-a-Ride Problem (Darp), one or several servers of given capacities and of
unit speed have to transport objects between points in a metric space. Each trans-
portation request specifies a source and a destination. The task is to design a sequence
of moves for each server such that all transportation requests, also called rides, are cov-
ered, the server’s capacity bounds are not exceeded, and a given objective function is
minimized. Moreover, unless specified otherwise, preemption is prohibited: once an
object has been picked up, it can only be dropped at its destination. In some variants
of the Darp, the servers are additionally required to eventually return to their initial
position.

The class of Dial-a-Ride Problems comprises many well-studied problems in
combinatorial optimization. For instance, the Traveling Salesman Problem is the spe-
cial case of the single-server Darp with the makespan as objective function in which
source and destination of each ride coincide. Also many Vehicle Routing Problems
can be formulated within the Darp framework. Moreover, Dial-a-Ride Problems can
be used to model scheduling problems in which the jobs have order dependent setup
costs.
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We are interested in the online version of the Dial-a-Ride Problem with a single
server, further referred to as the Online Dial-a-Ride Problem (OlDarp). In the
OlDarp, transportation requests are not known beforehand but become known over
time. That is, in addition to source and destination, each ride specifies a release
time. In the online setting, the server has at no point in time any information about
requests whose release time is greater than that point in time. In particular, it neither
knows the total number of requests, nor the release time of the last request. Objective
functions that have been considered for the OlDarp are the makespan (completion
time of the schedule), the latency (weighted sum of completion times of all requests),
the average flow time (average time in which a request remains in the system), and
the maximum flow time. In this thesis, we present new results for the OlDarp with
the latency and with the maximum flow time as objective functions.

Online Dial-a-Ride Problems occur frequently in practice, in particular in logis-
tics. Applications are machine scheduling, field service, delivery and courier services,
elevator and stacker crane control, transportation of disabled persons, and the dis-
patching of automobile service units, among others.

Online Call Admission in All-Optical Networks

All-optical telecommunication networks are the optical networks of the next gener-
ation. While in today’s networks, signals are already transmitted as light pulses via
glass fibers, but still switched electronically in intermediate nodes, new devices will
shortly allow to process signals completely within the optical domain.

The Wavelength Division Multiplexing (WDM) technique, deployed for the first
time in the early 1990ies, brought a substantial increase in transmission capacities
of telecommunication networks. By installing so-called multiplexers and demulti-
plexers at the beginning and the end of a fiber, respectively, the available bandwidth
of a fiber is separated into different wavelengths that can be used in parallel by dif-
ferent signals. Recently, new devices for the switching and the insertion/extraction
of signals in optical form have been developed, the so-called Optical Cross-Connects
and Optical Add-Drop-Multiplexers. They are expected to be commercially avail-
able very soon. Moreover, wavelength converters are being devised that enable the
(optical) switching of signals from one wavelength to another. Altogether, these new
devices supersede current time-consuming conversions between optics and electron-
ics. All-optical networks refer to optical networks that deploy these new switches in
addition to the WDM technique.

All-optical networks require new mathematical models and give rise to new prob-
lems. Their crucial difference to the networks currently in use is that a signal sent
through an all-optical network remains in optical form on its whole path from start
to end node. Therefore, a connection in an all-optical network is realized via a light-
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path , which is a path in the network together with a wavelength. Resources are
limited: each wavelength may only be used once per fiber; consequently, two light-
paths that use the same fiber must have different wavelengths. This crucial restriction
is called wavelength conflict constraint. A natural online problem is the dynamic
configuration of optical networks. In its simplest variant it can be stated as follows:
new connection requests arrive over time, and an (online) algorithm has to decide for
each request whether to accept or reject it (call admission). If the request is accepted,
the algorithm must provide a lightpath to realize the required connection without
violating the wavelength conflict constraint (routing and wavelength assignment).

Overview

This thesis is divided into two major parts: in Part I, we investigate various Online
Dial-a-Ride Problems; Part II is concerned with the dynamic configuration of all-
optical networks.

Preceding these two major parts is Chapter 2, which is intended as a short ref-
erence to the concepts and the basic notation used in this thesis. We give a formal
introduction to online optimization and competitive analysis, including deterministic
as well as randomized online algorithms. We also introduce a useful technique for ob-
taining lower bounds on the competitive ratio of randomized algorithms. Moreover,
we discuss the weaknesses of competitive analysis and cover known modifications and
extensions of it.

In Part I, we present new results for several Online Dial-a-Ride Problems. After a
formal introduction to Online Dial-a-Ride Problems in Chapter 3, Chapter 4 deals
with Online-Dial-a-Ride Problems with the latency as objective function (
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OlDarp). The latency is defined as the weighted sum of completion times, where the
completion time of a request is the time when the corresponding object is dropped at
its destination. We present new lower bounds on the competitive ratio of any online
algorithm, both for the general

�
����-OlDarp and for the special case in which

each ride’s source and destination coincide, the
�
����-OlTsp, also known as the

Online Traveling Repairman Problem (OlTrp). The main result of this chapter is a
�� �

�
���-competitive deterministic online algorithm for the

�
����-OlDarp in

general metric spaces. This algorithm significantly improves previous upper bounds
for both the

�
����-OlDarp and the

�
����-OlTsp. Moreover, a modification

of the algorithm yields a new randomized upper bound.
In Chapter 5, we investigate the OlDarp with the maximum flow time ����

as objective function, shortly ����-OlDarp. Again, we also consider the special
case in which each ride’s source and destination coincide, the ����-OlTsp. Easy
worst-case sequences reveal that there is no competitive online algorithm for neither
problem, showing that competitive analysis fails to evaluate and distinguish online


